Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical and Electrical Engineering     
Simulation and optimization for anti-shock performances of graded metal hollow sphere foam structure
YANG Shu, LIU Guo ping, QI Chang, WANG Da zhi
1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024,China;
2. SAIC Motor Technique Center,Shanghai 201804, China
Download:   PDF(1657KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Based on the finite element method, crashworthiness of a face center cubic metal hollow sphere (FCC-MHS) graded foam structure under various impact velocities were investigated. Specific energy absorption and distal end stress were taken as performance indexes, and the influence of density gradient rank and number on the structure crashworthiness were analyzed. The replaced model for crashworthiness prediction of the FCC-MHS foam was established by using radial basis functions, The multi-objective design optimization was performed. Rresults shows that when the FCC-MHS foam subjects a shock load with less obvious wave effect, the gradient rank and number have limited influence on its crashworthiness. At that time, the performance of the graded FCC-MHS foam is similar to that of the uniform density foam. When it subjects to impact with obvious wave effect, the graded FCC-MHS foam with more gradient number and anti-gradient rank shows the best performance. Multi-objective design optimization of the graded FCC-MHS foam structure can improve its crashworthiness.



Published: 01 August 2016
CLC:     
  O 34  
Cite this article:

YANG Shu, LIU Guo ping, QI Chang, WANG Da zhi. Simulation and optimization for anti-shock performances of graded metal hollow sphere foam structure. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1593-1599.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.08.023     OR     http://www.zjujournals.com/eng/Y2016/V50/I8/1593


金属空心球梯度泡沫结构抗冲击特性仿真与优化

基于有限元方法,研究不同冲击速度下面心立方排布的金属空心球(FCC-MHS)梯度泡沫结构的缓冲吸能特性.以比吸能和远端应力为目标对象,分析梯度排列次序和梯度数对结构抗冲击性能的影响.采用径向基函数方法构建FCC-MHS梯度泡沫冲击代理模型且进行多目标优化.结果显示,在冲击波效应不明显时,梯度排列次序和梯度数对FCC-MHS泡沫抗冲击性能影响有限, FCC-MHS梯度泡沫的抗冲击性能与均质FCC-MHS泡沫接近;在波效应明显的冲击速度下,梯度数多且呈负梯度排列的FCC-MHS泡沫抗冲击性能最优.优化设计能使FCC-MHS泡沫的抗冲击性能更优.

[1] SANDER W S, GIBSON L J. Mechanics of hollow sphere foams [J]. Materials Science and Engineering: A, 2002, 347: 70-85.
[2] GAO Z Y, YU T X, ZHAO H. Mechanical behavior of metallic hollow sphere materials: experimental study [J]. Journal of Aerospace Engineering, 2008, 21(4): 206-216.
[3] KARAGIOZOVA D, YU T X, GAO Z Y. Stressstrain relationship for metal hollow sphere materials as a function of their relative density [J]. Journal of Applied Mechanics, 2007, 74(5): 898-907.
[4] GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. London: Cambridge University press, 1999.
[5] BRAVAIS A M.Mémoire sur les systèmes formés par les points distribués régulièrement sur un plan ou dans l’espace [J]. Journal of Ecole Polytechn, 1850, 19: 11-28.
[6] 黄旭涛,严密.功能梯度材料:回顾与展望[J].材料科学与工程, 1997, 15(4): 35-38.
HUANG Xutao, YAN Mi. Review and prospects of functional gradient materials [J]. Materials Science and Engineering, 1997, 15(4): 35-38.
[7] 黄敬东,吴俊,王银平,等.梯度功能材料的研究评述[J].材料保护,2002, 35(12): 8-12.
HUANG Jingdong, WU Jun, WANG Yinping, et al. Functionally gradient materials [J]. Materials Protection, 2002, 35(12): 8-12.
[8] GUPTA N. A functionally graded syntactic foam material for high energy absorption under compression [J]. Materials Letters, 2007, 61(4): 979-982.
[9] KISHORE, SHANKAR R, SANKARAN S. Gradient syntactic foams: Tensile strength, modulus and fractographic features [J]. Materials Science and Engineering: A, 2005, 412(1): 153-158.
[10] BROTHERS A H, DUNAND D C. Mechanical properties of a densitygraded replicated aluminum foam [J]. Materials Science and Engineering: A, 2008, 489(1): 439-443.
[11] RUAN H H, GAO Z Y, YU T X. Crushing of thinwalled spheres and sphere arrays [J]. International Journal of Mechanical Sciences, 2006, 48(2): 117-133.
[12] KARAGIOZOVA D, YU T X, GAO Z Y. Modelling of MHS cellular solid in large strains [J]. International Journal of Mechanical Sciences, 2006, 48(11): 1273-1286.
[13] DONG X L, GAO Z Y, YU T X. Dynamic crushing of thinwalled spheres: An experimental study [J]. International Journal of Impact Engineering, 2008, 35(8): 717-726.
[14] GASSER S, PAUN F, BRECHET Y. Finite elements computation for the elastic properties of a regular stacking of hollow spheres [J]. Materials Science and Engineering: A, 2004, 379(1): 240-244.
[15] FAN J H, ZHANG J J, WANG Z H, et al. Dynamic crushing behavior of random and functionally graded metal hollow sphere foams [J]. Materials Science and Engineering: A, 2013, 561(3): 352-361.
[16] MARCADON V. Mechanical modelling of the creep behaviour of HollowSphere Structures [J]. Computational Materials Science, 2011, 50(10): 3005-3015.
[17] ZENG H B, PATTOFATTO S, ZHAO H, et al. Impact behaviour of hollow sphere agglomerates with density gradient [J]. International Journal of Mechanical Sciences, 2010, 52(5): 680-688.
[18] LIU Y, WU H X, WANG B. Gradient design of metal hollow sphere (MHS) foams with density gradients [J]. Composites Part B: Engineering, 2012, 43(3): 1346-1352.
[19] GIBSON L J. Mechanical behavior of metallic foams [J]. Annual Review of Materials Science, 2000, 30(1): 191-227.
[20] TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminium foams. Part II‘shock’ theory and comparison with experimental data and numerical models [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230.
[21] 穆雪峰,姚卫星,余雄庆,etal.多学科设计优化中常用代理模型的研究[J].计算力学学报,2005, 22(5): 608-612.
MU Xuefeng, YANG Weixing, YU Xiongqing, et al. A survey of surrogate models used in MDO [J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 608-612.

 
[1] DONG Kai, LAI Jun ying, QIAN Xiao qian, ZHAN Shu lin, RUAN Fang. Energy efficiency of residential buildings with horizontal external shading in hot summer and cold winter zone[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1431-1437.
[2] LI Jia qi, FAN Li wu, YU Zi tao. Boiling heat transfer characteristics during quench cooling on superhydrophilic surface[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1493-1498.
[3] CHIANG Yen ming, ZHANG Jian quan, MING Yan. Flood forecasting by ensemble neural networks[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1471-1478.
[4] ZHONG Wei, PENG Liang, ZHOU Yong gang, XU Jian, CONG Fei yun. Slagging diagnosis of boiler based on wavelet packet analysis and support vector machine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1499-1506.
[5] XIA Yu feng, REN Li, YE Cai hong, WANG Li. Multi-objective optimization of locators layout of reinforced panel based on RSM[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1600-1607.
[6] LI Lin yu, WU Zhang hua, YU Guo yao, DAI Wei, LUO Er cang.
Experimental investigation on electroacoustic conversion characteristic of linear compressor
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1529-1536.
[7] QU Wei wei, TANG Wei, BI Yun bo, LI Shao bo, LUO Shui jun. Pre-joining processes plan to avoid forced assemblies and improve efficiency[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1561-1569.
[8] HU Xiao dong, GU Lin yi, ZHANG Fan meng. High-speed on/off valves applied in digital displacement motor[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1551-1560.
[9] YANG Zhang, TONG Gen shu, ZHANG Lei. Effective Rigidity of two one-side stiffeners arranged symmetrically[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1446-1455.
[10] JIANG Xiang, TONG Gen shu, ZHANG Lei. Experiments on fire-resistance performance of fire-resistant steel-concrete composite beams[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1463-1470.
[11] SHAN Hua feng, XIA Tang dai, YU Feng, HU Jun hua,PAN Jin long. Buckling stability analysis on critical load of underpinning pile for excavation beneath existing building[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1425-1430.
[12] GU Tian lai, ZHANG Shuai, ZHENG Yao. Back pressure characteristics of jaws inlet with constant-area isolator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1418-1424.
[13] CHENG Shi wei, LU Yu hua, CAI Hong gang. Mobile device based eye tracking technology[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1160-1166.
[14] ZHENG Cheng zhi, GAO Jin liang, HE Wen jie. Leakage discharge analysis model based on FastICA algorithm[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1031-1039.
[15] HUANG Jia hui, FENG Dong qin. Method for vulnerability evaluation of Cyberphysical system based on generalized profit[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1119-1125.