Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical and Electrical Engineering     
Experimental analysis on characteristic of cavitation in tip region of axial flow pump impeller
ZHANG De sheng, SHI Lei, CHEN Jian, PAN Qiang, SHI Wei dong
Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China
Download:   PDF(2708KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The high speed photography technology was used to analyze the cavitation feature in the tip region of an axial-flow pump model, in terms of hydraulic and cavitation performance of the pump model with different blade numbers, the trajectories of tip leakage vortex for various flow rates, cavitation patterns under changeable cavitation conditions and transient characteristic of tip vortex cavitation. The experimental results show that hydraulic and cavitation performance of the model pump can be improved by the appropriate increase of blade number. When the pump operates under small flow rate condition, it is more prone to generating cavitation. With the increase of flow rate, the angle between the blade suction side and tip-leavage vortex decreases, and its origin is delayed further downstream. Cloud cavitation vortices, at the trailing edge of triangle cloud cavitation, is entrained by tip-leakage vortex. Then it interacts with the shedding cavitation vortices at the aft part of vortex rope and moves towards the pressure side of neighboring blade in the direction that nearly perpendicular to the blade suction side, resulting in the blockage of flow passage and severe degradation of the performance. As a consequence of the blockage, the leakage flows in the tip clearance would decrease, bringing about the decrease of tip clearance cavitation and the width of triangle cloud cavitation connecting with the blade suction side.



Published: 01 August 2016
CLC:  TH 311  
Cite this article:

ZHANG De sheng, SHI Lei, CHEN Jian, PAN Qiang, SHI Wei dong. Experimental analysis on characteristic of cavitation in tip region of axial flow pump impeller. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1585-1592.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.08.022     OR     http://www.zjujournals.com/eng/Y2016/V50/I8/1585


轴流泵叶轮叶顶区空化特性试验分析

为了研究叶顶区空化特性,以某一模型轴流泵为研究对象,利用高速摄影试验,探讨不同叶片数下泵的水力性能和空化性能、不同流量下的叶顶泄漏涡轨迹、不同空化数下的叶顶空化形态以及叶顶区空化发展瞬态特性.试验结果表明,适当增加叶片数,泵的水力性能和空化性会更好|在小流量工况下,叶顶更易发生空化初生|随着流量的增大,叶顶泄漏涡轨迹与叶片吸力面的夹角逐渐减小,同时泄漏涡初生点逐渐向叶顶尾缘移动;在叶顶三角形云状空化尾缘产生云状空化涡,受到叶顶泄漏涡的卷吸,与叶顶泄漏涡涡带尾缘脱落的空化涡相互作用混合,沿着几乎垂直叶片的方向向相邻叶片的压力面移动,造成了流道的堵塞,降低了泵的水力性能.垂直云状空化涡堵塞流道,引起叶顶区流量减小,造成叶顶间隙空化减少以及与叶顶区相连的三角形云状空化的宽度减小.

[1] LABORDE R, CHANTREL P, MORY M. Tip clearance and tip vortex cavitation in an axial flow pump [J]. Journal of Fluids Engineering, 1997, 119(3): 680685.
[2] RAINS D A. Tip clearance flows in axial compressors and pumps [D]. California: California Institute of Technology, 19-54.
[3] 杨昌明,陈次昌,王金诺,等.轴流泵端壁间隙流动特性的数值研究[J].机械工程学报,2003, 39(9): 49-51.
YANG Changming, CHEN Cichang, WANG Jinnuo, et al. Numerical study for behavior of tip clearance flow in axialflow pump [J]. Chinese Journal of mechanical Engineering, 2003, 39(9): 49-51.
[4] 戴辰辰,郭鹏程,罗兴锜.轴流泵端壁间隙流动特性的数值分析[J].流体机械,2009, 37(6): 32-35.
DAI Chenchen, GUO Pengcheng, LUO Xingqi. Numerical analysis of tip leakage flow characteristic in axial flow pump [J]. Fluid Machinery, 2009, 37(6): 32-35.
[5] YOU D, WANG M, MOIN P, et al. Study of tipclearance flow in turbomachines using largeeddy simulation [J]. Computing In Science & Engineering, 2004, 6(6): 38-46.
[6] 黎耀军,沈金峰,严海军,等.叶顶间隙对轴流泵轮缘泄漏流动影响的大涡模拟[J].水利学报, 2014, 45(2): 235-242.
LI Yaojun, SHEN Jinfeng, YAN Haijun, et al. Investigation of the effects of tipgap size on the tipleakage flow in an axialflow pump using LES [J]. Journal of Hydraulic Engineering, 2014, 45(2): 235-242.
[7] 黎耀军,沈金峰,刘竹青,等.轴流泵轮缘间隙非定常流动的大涡模拟[J].农业机械学报, 2013, 44(S1): 113-118.
LI Yaojun, SHEN Jinfeng, LIU Zhuqing, et al. Large eddy simulation of unsteady flow in tip region of axialflow pump [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(S1): 113-118.
[8] 李忠,杨敏官,姬凯,等.轴流泵叶顶间隙空化流可视化实验研究[J].工程热物理学报,2011, 32(8): 1315-1318.
LI Zhong, YANG Minguan, JI Kai, et al. Visualization research on cavitation flow in tip clearance of axialflow pump [J]. Journal of Engineering Thermophysics, 2011, 32(8): 1315-1318.
[9] 张德胜,陈健,施卫东,等.轴流泵叶顶泄漏涡空化的数值模拟与可视化实验研究[J].工程力学, 2014, 31(9): 225-231.
ZHANG Desheng, CHEN Jian, SHI Weidong, et al. Numerical simulation and visualization study on tip leakage vortex cavitation in an axialflow pump [J]. Engineering Mechanics, 2014, 31(9): 225-231.
[10] 张德胜,石磊,施卫东,等.轴流泵叶轮叶顶区空化流的数值模拟与实验研究[J].水利学报,2014, 45(3): 335-342.
ZHANG Desheng, SHI Lei, SHI Weidong, et al. Numerical simulation and experimental study on impeller tip region cavitation in axial flow pump [J]. Journal of Hydraulic Engineering, 2014, 45(3): 335-342.
[11] TABAR M T S, POURSHARIFI Z. An experimental study of tip vortex cavitation inception in an axial flow pump [J]. World Academy of Science, Engineering and Technology, 2011, 73(1): 527-530.
[12] WU H, TAN D, MIORINI R L, et al. Threedimensional flow structures and associated turbulence in the tip region of a waterjet pump rotor blade [J]. Experiments in fluids, 2011, 51(6): 1721-1737.
[13] WU H, SORANNA F, MICHAEL T, et al. Cavitation in the tip region of the rotor blades within a waterjet pump [C]∥ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. Jacksonville, Florida, USA: American Society of Mechanical Engineers, 2008: 193-202.
[14] DREYER M, DECAIX J. Mind the gap: a new insight into the tip leakage vortex using stereoPIV[J]. Experiments in Fluids, 2014, 55(11): 113.
[15] CHANG N A, YAKUSHIJI R, DOWLING D R, et al. Cavitation visualization of vorticity bridging during the merger of corotating line vortices [J]. Physics of Fluids (1994present), 2007, 19(5): 058-106.
[16] ZHANG Desheng, SHI Weidong, VAN ESCH B P M B, et al. Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump [J]. Computers & Fluids, 2015, 112: 61-71.
[17] WU H, MIORINI R L, KATZ J. Measurements of the tip leakage vortex structures and turbulence in the meridional plane of an axial waterjet pump [J]. Experiments in fluids, 2011, 50(4): 989-1003.
[18] 施卫东,邵佩佩,张德胜,等.轴流泵运行工况和叶顶间隙对叶顶泄漏涡轨迹的影响[J].排灌机械工程学报,2014,32(5): 373-377.
SHI Weidong, SHAO Peipei, ZHANG Desheng, et al. Influence of operational condition and tip clearance size on trajectory of tip leakage vortex [J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(5): 373-377.
[19] 张德胜,吴苏青,施卫东,等.轴流泵小流量工况条件下叶顶泄漏空化特性[J].农业工程学报,2013,29(22): 68-75.
ZHANG Desheng, WU Suqing, SHI Weidong, et al. Characteristics of tip leakage vortex cavitation in axial flow pump at small flow rate condition [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(22): 68-75.
[20] TAN D Y, MIORINI R L, KELLER J, et al. Flow visualization using cavitation within blade passage of an axial waterjet pump rotor [C]∥ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. Rio Grande, Puerto Rico: American Society of Mechanical Engineers, 2012: 395-404.
[21] TAN D Y, LI Y C, WILKS I, et al. Experimental investigation of the role of large scale cavitating vortical structures in performance breakdown of an axial waterjet pump [J]. Journal of Fluids Engineering, 2015, 137(11): 1113011-11130114.
[1] SUN You-bo, CHEN Tao, YANG Shuai, WU Da-zhuan, WANG Le-qin. Improvement design of hydraulic components and structure of
vertical self-priming pump
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(2): 332-338.
[2] WU Da-zhuan, XU Bin-jie, WU Peng, LI Zhi-feng, WANG Le-qing. Internal clearance flow and leakage loss in multi-stage
centrifugal pump
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(8): 1393-1398.
[3] HU Hao, QI Guo-ning, JI Yang-jian, LUO Hua-wu, LIU Hai-qiang. The product structure model for maintenance in product lifecycle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(11): 2108-2112.
[4] JIANG Qing-lei,XING Gui-kun,WU Da-zhuan,WANG Le-qin. Computation of transient fluid induced force of small clearance
flow in centrifugal pump
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(5): 929-934.