Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Energy engineering     
Experimental investigation on electroacoustic conversion characteristic of linear compressor
LI Lin yu, WU Zhang hua, YU Guo yao, DAI Wei, LUO Er cang
1.Key Laboratory of Cryogenics, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Download:   PDF(2716KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  
 Motor load approach was proposed in order to solve the problems of limited impedance range and inconvenient impedance control in using RC load method to test the compressor performance. The method adopted an expansion motor as the load of the tested compressor. The electroacoustic conversion characteristic of the compressor under different load impedance was analyzed by changing the external resistance and equivalent inductance of the motor, The compressor can obtain an electroacoustic efficiency of 84.5 % at an impedance magnitude of 2.06×107 Pa·s/m3 and a phase angle of-17°. The operation conditions are 6 MPa helium and 60 Hz working frequency, respectively. The compressor can achieve a wide range of impedance range as well as an optimum efficiency at a certain impedance by changing the external resistance or equivalent inductance of the expansion motor.


Published: 01 August 2016
CLC:     
  TK 123  
Cite this article:

LI Lin yu, WU Zhang hua, YU Guo yao, DAI Wei, LUO Er cang.

Experimental investigation on electroacoustic conversion characteristic of linear compressor
. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1529-1536.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.08.015     OR     http://www.zjujournals.com/eng/Y2016/V50/I8/1529


直线压缩机电声转换特性的实验

针对声学RC负载法研究直线压缩机电声转换特性时存在的阻抗调节范围小、阻抗调节困难等问题,提出电机负载的方法.该方法是采用一台直线电机作为被测压缩机的负载,通过改变该直线电机的外接电阻和等效电感实现不同的负载阻抗,可以方便地对直线压缩机的电声转换特性进行研究.结果表明,在平均压力为6 MPa,工作频率为60 Hz,压缩机阻抗幅值为2.06×107 Pa·s/m3,阻抗相角为-17°时,压缩机效率可达84.5 %.结果还表明,改变膨胀电机的外接电阻或等效电感时,压缩机不仅都能达到较广的阻抗范围,而且电声转换效率都能在某一阻抗幅值和相角值时达到最佳.

[1] HUANG Yun, LUO Ercang, DAI Wei, et al. A traveling wave thermoacoustic refrigerator within room temperature range [C]∥ Cryocoolers 13. New Orleans: Springer US, 2005: 189-194.
[2] QIU Limin, CAO Qiang, ZHI Xiaoqin, et al. A threestage Stirling pulse tube cryocooler operating below the critical point of helium4 [J]. Cryogenics, 2011 (51): 609-612.
[3] NAST T, OLSON J, CHAMPAGNE P, et al. Development of a 4.5 K pulse tube cryocooler for superconducting electronics [C]∥ Advances in Cryogenic Engineering. Chattanooga: AIP, 2008(53): 881-886.
[4] MARQUARDT E D, RADEBAUGH R. Pulse tube oxygen liquefier [C]∥ Advances in Cryogenic Engineering. Tucson: IOP, 2000(45): 457-464.
[5] TWARD E, CHAN C K, RAAB J, et al. High efficiency pulse tube cooler [C]∥ Cryocoolers 11. New York: KLUWER ACADEMIC, 2001: 163-167.
[6] KARANDIKAR A, BERCHOWITZ D. Low cost small cryocoolers for commercial applications [C]∥ Advances in Cryogenic Engineering 41. Columbus: PLENUM PRESS, 1996: 1561-1568.
[7] WILSON K B, FRALICK C C, GEDEON D R, et al. Sunpower’s CPT60 pulse tube cryocooler [C]∥ Cryocoolers14. Annapolis: ICC Press, 2007: 123-132.
[8] ZIA J. A commercial pulse tube cryocooler with 200 W refrigeration at 80 K [C]∥ Cryocoolers 13. New Orleans: ICC Press, 2005: 165-171.
[9] TROLLIER T, TANCHON J, BUQUET J, et al. Design of a large heat lift 40 to 80 K pulse tube cryocooler for space applications [C]∥ Cryocoolers 14. Annapolis: ICC Press, 2007: 75-82.
[10] GROEP W V D, MULLI J, WILLEMS D, et al. The development of a new generation of miniature longlife linear coolers [C]∥ Cryocoolers 16. Atlanta: ICC Press, 2011: 11119.
[11] VEPRIK A, VILENCHIK H, RIABZEV S, et al. Microminiature linear split Stirling cryogenic cooler for portable infrared applications [C]∥ Cryocoolers 14. Annapolis: ICC Press, 2007: 105-115.
[12] VEPRIK A, ZEHTZER S, VILENCHIK H, et al. Microminiature split Stirling linear cryocooler [C]∥ Advances in Cryogenic Engineering 55. Tucson: Springer US,2009: 363370.
[13] 颜鹏达,斯特林型两级脉管制冷机的理论与实验研究[D].杭州:浙江大学, 2009.
YAN Pengda, Theoretical and experimental research on a twostage Stirlingtype pulse tube cryocooler [D], Hangzhou: Zhejiang University, 2009.
[14] JI Gaolin, WU Yinong, Cooling system for space application [C]∥ Cryocoolers 10. Monterey CA : KLUWER ACADEMIC,1999: 787-790.
[15] WANG Xiaotao, ZHANG Yibing, LI Haibing, et al. A high efficiency hybrid stirlingpulse tube cryocooler [J]. AIP Advances, 2015, 5(3): 037-127.
[16] FUSCO A M, WARD W C, SWIFT G W. Twosensor power measurements in lossy ducts [J]. Journal of the Acoustical Society of America, 1992, 91: 2229-2235.
[17] OLSON J R, SWIFT G W. A loaded thermoacoustic engine [J]. Journal of the Acoustical Society of America, 1995, 98: 2690-2693.
[18] ZHOU S, MATSUBARA Y. Experimental research of thermoacoustic prime mover [J]. Cryogenics, 1998, 38: 813-822.
[19] GARDNER D L, SWIFT G W. A cascade thermoacoustic engine [J]. Journal of the Acoustical Society of America, 2003, 114: 1905-1919.
[20] BAO Rui, CHEN Guobang, TANG Ke, et al. Effect of RC load on performance of thermoacoustic engine [J]. Cryogenics, 2006,46: 666-671.
[21] WANG Longyi, ZHOU Wenjie, GAN Zhihua. Performance testing of linear compressors with RC approach [C]∥ Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering ConferenceCEC. Spokane: AIP Publishing, 2012, 1434(1):1624-1631.
[22] SWIFT G W. Thermoacoustics: a unifying perspective for some engines and refrigerators [M]. New York: AIP Press: 2002: 234-238.
[1] DONG Kai, LAI Jun ying, QIAN Xiao qian, ZHAN Shu lin, RUAN Fang. Energy efficiency of residential buildings with horizontal external shading in hot summer and cold winter zone[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1431-1437.
[2] LI Jia qi, FAN Li wu, YU Zi tao. Boiling heat transfer characteristics during quench cooling on superhydrophilic surface[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1493-1498.
[3] CHIANG Yen ming, ZHANG Jian quan, MING Yan. Flood forecasting by ensemble neural networks[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1471-1478.
[4] ZHONG Wei, PENG Liang, ZHOU Yong gang, XU Jian, CONG Fei yun. Slagging diagnosis of boiler based on wavelet packet analysis and support vector machine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1499-1506.
[5] XIA Yu feng, REN Li, YE Cai hong, WANG Li. Multi-objective optimization of locators layout of reinforced panel based on RSM[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1600-1607.
[6] QU Wei wei, TANG Wei, BI Yun bo, LI Shao bo, LUO Shui jun. Pre-joining processes plan to avoid forced assemblies and improve efficiency[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1561-1569.
[7] HU Xiao dong, GU Lin yi, ZHANG Fan meng. High-speed on/off valves applied in digital displacement motor[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1551-1560.
[8] YANG Shu, LIU Guo ping, QI Chang, WANG Da zhi. Simulation and optimization for anti-shock performances of graded metal hollow sphere foam structure[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1593-1599.
[9] YANG Zhang, TONG Gen shu, ZHANG Lei. Effective Rigidity of two one-side stiffeners arranged symmetrically[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1446-1455.
[10] JIANG Xiang, TONG Gen shu, ZHANG Lei. Experiments on fire-resistance performance of fire-resistant steel-concrete composite beams[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1463-1470.
[11] SHAN Hua feng, XIA Tang dai, YU Feng, HU Jun hua,PAN Jin long. Buckling stability analysis on critical load of underpinning pile for excavation beneath existing building[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1425-1430.
[12] GU Tian lai, ZHANG Shuai, ZHENG Yao. Back pressure characteristics of jaws inlet with constant-area isolator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1418-1424.
[13] CHENG Shi wei, LU Yu hua, CAI Hong gang. Mobile device based eye tracking technology[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1160-1166.
[14] ZHENG Cheng zhi, GAO Jin liang, HE Wen jie. Leakage discharge analysis model based on FastICA algorithm[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1031-1039.
[15] HUANG Jia hui, FENG Dong qin. Method for vulnerability evaluation of Cyberphysical system based on generalized profit[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1119-1125.