Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (2): 289-298    DOI: 10.3785/j.issn.1008-973X.2021.02.009
    
Biological 3D printer and topography detection of printing model
Da-peng BAI1(),Bin ZHANG1,*(),Hao-cen HONG1,Yang LI1,Qing-hua JI2,Hua-yong YANG1
1. State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. Binhai Industrial Technology Research Institute of Zhejiang University, Tianjin 300450, China
Download: HTML     PDF(2075KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An integrated biological 3D printer inspection system was designed in order to observe the printing process of 3D biological printer in real time as well as detect and reconstruct the surface topography of printing model. The online inspection of printing model was realized based on the printing needles with video monitoring. The dispersion confocal displacement measurement technology was adopted to measure the position information of X-axis and Y-axis and the height information of Z-axis. The topography reconstruction work of printing model was processed by MountainsMap. The upper computer operating system was developed by LabVIEW, in which the printing model was mapped with G-code to visualize printing track to ensure the accuracy of the printing model when the program runs to the current code segment. The online real-time detecting function of the proposed biological 3D printer was verified by experiments, and the surface topography detection of grid shaped and convex shaped models was conducted respectively. Results show that the surface topography information of printing model can be reconstructed by the detection system. The visualization data of the surface topography features of the printing model provides data support for the construction of accurate printing models, and the computer vision technology provides an effective detection method for high-precision biological 3D printing.



Key wordsbiological 3D printing      model detection      detection technology      surface topography reconstruction      visualization     
Received: 08 August 2020      Published: 09 March 2021
CLC:  TH 122  
Fund:  国家重点研发计划资助项目(2018YFA0703000)
Corresponding Authors: Bin ZHANG     E-mail: bdp.2008@163.com;zbzju@163.com
Cite this article:

Da-peng BAI,Bin ZHANG,Hao-cen HONG,Yang LI,Qing-hua JI,Hua-yong YANG. Biological 3D printer and topography detection of printing model. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 289-298.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.02.009     OR     http://www.zjujournals.com/eng/Y2021/V55/I2/289


生物3D打印装置及打印模型形貌检测

为了能够实时观测生物3D打印全过程,并对打印模型的形貌进行检测及重建,设计集成式生物3D打印机检测系统. 通过开发具备视频监测功能的打印喷头,实现对打印模型的在线检测. 采用色散共焦位移测量技术,通过对打印模型XY轴的位置信息及Z轴的高度信息进行扫描得到测量数据,并结合MountainsMap实现打印模型的形貌重建. 使用LabVIEW完成上位机操作系统的设计,建立G-code与打印模型的映射关系,实现打印轨迹的可视化,确保在程序运行到当前代码段时打印模型的准确性. 通过实验验证生物3D打印机的在线检测功能,对网格状及凸台模型的表面进行形貌检测,结果表明检测系统能够实现对打印模型的形貌检测. 打印模型表面形貌特征的可视化数据为构建精准打印模型提供数据支持,计算机视觉技术为高精度生物3D打印提供有效的检测手段.


关键词: 生物3D打印,  模型检测,  检测技术,  形貌重建,  可视化 
Fig.1 Structure of biological 3D printer
Fig.2 Motion system of biological 3D printer
Fig.3 Feeding system of biological 3D printer
Fig.4 Temperature control system of biological 3D printer
Fig.5 Structure of printing nozzle under low-temperature environment
Fig.6 Structure of printing nozzle under high-temperature environment
Fig.7 Structural schematic diagram of temperature control system of printing platform
传感器类型 优点 缺点
激光测量 测量速度快,模块小,可拆卸安装,测量精度为亚毫米级 采用三角测量原理,不能测量透明材料
白光干涉 直接照射测量物体,可以快速得到局部轮廓模型,微米级精度 测量范围极小,不可拆卸和二次开发,价格昂贵
色散共焦 可以测量任何材料物体,探头可以集成和二次开发,理论精度为纳米级 点测量方式,测量效果和测量速度有关,一般测量速度慢
Tab.1 Comparison of advantages and disadvantages of non-contact displacement transducer
Fig.8 Scheme of vision detection system
Fig.9 Control system of biological 3D printer
Fig.10 Schematic diagram of communication system
Fig.11 Schematic diagram of 3D data acquisition
Fig.12 Flowchart of scanner
Fig.13 Flowchart of data acquisition program
Fig.14 Upper computer operating system of biological 3D printer
Fig.15 Functional modules of biological 3D printer
Fig.16 Experimental procedure of vision detection test
d /mm s1 /(mm·s?1 s2 /(mm·s?1 θ1 /°C θ2 /°C
0.34 10 15 27 10
Tab.2 Experimental conditions and parameters of printing
Fig.17 Monitoring software interface of biological 3D printer
Fig.18 Printing results of meshed stent
Fig.19 3D reconstruction model of meshed stent
Fig.20 Displacement nephogram of meshed stent
Fig.21 Structural cross-section of meshed stent
Fig.22 Sectional contour curve of meshed stent
区域 Δx /mm Δz /μm
区域1、2 0.491 4.95
区域3、4 0.519 3.77
区域5、6 0.422 3.21
Tab.3 Sectional height data of meshed stent
区域 h /mm
区域0~2 0.94
区域2~4 1.04
区域4~6 0.99
Tab.4 Displacement data of meshed stent
Fig.23 Printed convex structure
Fig.24 3D reconstruction model of convex structure
Fig.25 Displacement nephogram of convex structure
Fig.26 Structural cross-section of convex structure
Fig.27 Sectional contour curve of convex structure
[1]   JANG J, YI H G, CHO D W 3D printed tissue models: present and future[J]. ACS Biomaterials Science and Engineering, 2016, 2 (10): 1722- 1731
doi: 10.1021/acsbiomaterials.6b00129
[2]   PEI P, QI X, DU X, et al Three-dimensional printing of tricalcium silicate/mesoporous bioactive glass cement scaffolds for bone regeneration[J]. Journal of Materials Chemistry B, 2016, 4 (46): 7452- 7463
doi: 10.1039/C6TB02055K
[3]   MURPHY S V, ATALA A 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32 (8): 773- 785
doi: 10.1038/nbt.2958
[4]   贺永, 高庆, 刘安, 等 生物3D打印: 从形似到神似[J]. 浙江大学学报: 工学版, 2019, 53 (3): 6- 18
HE Yong, GAO Qing, LIU An, et al 3D bioprinting: from structure to function[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (3): 6- 18
[5]   PARIENTE J L, KIM B S, ATALA A In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells[J]. Journal of Biomedical Materials Research, 2001, 55 (1): 33- 39
doi: 10.1002/1097-4636(200104)55:1<33::AID-JBM50>3.0.CO;2-7
[6]   LIU W, ZHANG Y S, HEINRICH M A, et al Rapid continuous multimaterial extrusion bioprinting[J]. Advanced Materials, 2017, 29 (3): 1- 8
[7]   PARK J H, JANG J, LEE J S, et al Three-dimensional printing of tissue/organ analogues containing living cells[J]. Annals of Biomedical Engineering, 2017, 45 (1): 180- 194
doi: 10.1007/s10439-016-1611-9
[8]   KING S M, PRESNELL S C, NGUYEN D G Abstract 2034: development of 3D bioprinted human breast cancer for in vitro drug screening[J]. Cancer Research, 2014, 74 (Suppl.19): 2034
[9]   YAO R, XU G, MAO S S, et al Three-dimensional printing: review of application in medicine and hepatic surgery[J]. Cancer Biology and Medicine, 2016, 13 (4): 443- 451
doi: 10.20892/j.issn.2095-3941.2016.0075
[10]   HE J K, ZHAO X, CHANG J K, et al Microscale electro-hydrodynamic cell printing with high viability[J]. Small, 2017, 13 (47): 1- 9
[11]   杜显彬, 徐铭恩, 王玲, 等 基于同轴流技术的肝组织生物3D打印研究[J]. 中国生物医学工程学报, 2018, 37 (6): 731- 738
DU Xian-bin, XU Ming-en, WANG Ling, et al Study on 3D bioprinting of liver tissues based on coaxial flow technique[J]. Chinese Journal of Biomedical Engineering, 2018, 37 (6): 731- 738
doi: 10.3969/j.issn.0258-8021.2018.06.012
[12]   SITTHI-AMORN P, RAMOS J E, WANG Y, et al Multi fab: a machine vision assisted platform for multi-material 3D printing[J]. ACM Transactions on Graphics, 2015, 34 (4): 1- 11
[13]   DINWIDDIE R B, LOVE L J, ROWE J C. Real-time process monitoring and temperature mapping of a 3D polymer printing process [C]// SPIE Defense, Security, and Sensing. Baltimore: [s.n.], 2013: 1-9.
[14]   WU M T, PHOHA V V, MOON Y B, et al. Detecting malicious defects in 3D printing process using machine learning and image classification [C]// ASME International Mechanical Engineering Congress and Exposition. Phoenix: AMSE, 2016: 1-6.
[15]   SHEN H, SUN W, FU J Multi-view online vision detection based on robot fused deposit modeling 3D printing technology[J]. Rapid Prototyping Journal, 2019, 25 (2): 343- 355
doi: 10.1108/RPJ-03-2018-0052
[16]   ZHANG B, LUO Y C, MA L, et al 3D bioprinting: an emerging technology full of opportunities and challenges[J]. Bio-Design and Manufacturing, 2018, 1 (1): 2- 13
doi: 10.1007/s42242-018-0004-3
[1] Jian-hui FU,Jin WANG,Guo-dong LU,Yoong-ho JUNG. Voxel-based recognition and visualization of water leakage gaps for automobile assembly[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 357-364.
[2] Si-yuan REN,Bin GUO,Man ZHANG,Chao-gang YUE,Qing-yang LI,Zhi-wen YU. Urban profiling using express big data[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1779-1787.
[3] SHA Dong hui, LUO Zhong yang, LU Meng shi, JIANG Jian ping, FANG Meng xiang, ZHOU Dong, CHEN Hao. Electrostatic agglomeration of positively charged particles observed by microscopic visualization system[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 93-101.
[4] FANG Xi-wu, LIU Zhen-yu, TAN Jian-rong, CHENG Feng-bei. Equivalent and integrated method for information of multiple physical fields on heterogeneous finite element meshes[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 973-879.
[5] OU Hai-Yang, LI Xiao-Yu, FU Zhan-Beng. Nonlinear principal axis mapping method applied in design optimization[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 87-93.