Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (2): 357-364    DOI: 10.3785/j.issn.1008-973X.2020.02.017
Mechanical and Energy Engineering     
Voxel-based recognition and visualization of water leakage gaps for automobile assembly
Jian-hui FU1(),Jin WANG1,*(),Guo-dong LU1,Yoong-ho JUNG2
1. State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. School of Mechanical Engineering, Pusan National University, Busan 46241, S. Korea
Download: HTML     PDF(1554KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A voxel-based method of recognizing and visualizing the potential water leakage gaps of automobile assembly was proposed for finding the water leakage problem during the new car model design phase. Based on the voxelization of the automobile assembly, the boundary voxels representing the position of water leakage were determined by defining the gap voxels among neighboring parts, reconstructing triangular meshed surfaces and extracting the boundary edges of parts. The gap distances were calculated and the gap surfaces were constructed based on the presented algorithm of mapping points generation. The errors from the boundary edges of gap surfaces to part surfaces were reduced by the self-adaptive subdivision method controlled by the chordal height error, and the gap surfaces were visualized by the color map. The method can be used to precisely identify all the potential positions of water leakage and visually display the gap sizes, which provides a possibility for quickly verifying the reasonability of water tightness design, and thus avoiding the reputational and financial losses caused by the emergence of congenital design defects. The method can also be applied to the design of large-scale and complex products in other industries such as aircraft, ship and chemical engineering.



Key wordsautomobile      water leakage      assembly      triangular mesh      voxel      gap      visualization     
Received: 12 June 2019      Published: 10 March 2020
CLC:  U 462.1  
  TP 391.4  
Corresponding Authors: Jin WANG     E-mail: jhf@zju.edu.cn;dwjcom@zju.edu.cn
Cite this article:

Jian-hui FU,Jin WANG,Guo-dong LU,Yoong-ho JUNG. Voxel-based recognition and visualization of water leakage gaps for automobile assembly. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 357-364.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.02.017     OR     http://www.zjujournals.com/eng/Y2020/V54/I2/357


基于体素的汽车装配体漏水缝隙识别与可视化

为了在新车型设计阶段发现漏水问题,提出基于体素的汽车装配体潜在漏水缝隙的识别与可视化方法. 在汽车装配体模型体素化的基础上,通过定义相邻零件之间的缝隙体素,重构三角网格曲面并提取零件的边界边,以确定表达漏水部位的边界体素;基于所提出的映射点生成算法计算缝隙间距并构建缝隙曲面;通过由弦高误差控制的自适应细分方法降低缝隙曲面边界到零件曲面的误差,利用彩色云图进行可视化显示. 该方法能够精确识别汽车的全部潜在漏水部位,并可以直观显示漏水部位的缝隙大小,以快速验证水密性设计的合理性,避免出现先天设计缺陷而造成声誉与经济损失. 该方法还可以应用于航空航天、造船、化工等行业的大型复杂产品设计.


关键词: 汽车,  漏水,  装配体,  三角网格,  体素,  缝隙,  可视化 
Fig.1 Algorithm overview of gap recognition and visualization for assembly
Fig.2 Process of gap surface construction
Fig.3 Flow chart of gap surface construction
Fig.4 Categories of triangle intersecting with gap voxel
Fig.5 Reconstruction of triangular meshed surface
Fig.6 Definition of shortest point, link point and reflection point
Fig.7 Schematic diagram of mapping point generation algorithm
Fig.8 Flow chart of mapping point generation algorithm
Fig.9 Schematic diagram of gap surface error
Fig.10 Schematic diagram of gap surface subdivision process
Fig.11 Potential water leakage position recognition of cars
Fig.12 Gap surface generation and visualization
Fig.13 Comparison of gap surfaces before and after optimization
[1]   董红磊, 王琰, 肖凌云, 等 汽车产品缺陷认定方法及分级选择流程研究[J]. 标准科学, 2019, (4): 48- 54
DONG Hong-lei, WANG Yan, XIAO Ling-yun, et al Study on defect identification methods and choose process of automotive product[J]. Standard Science, 2019, (4): 48- 54
doi: 10.3969/j.issn.1674-5698.2019.04.009
[2]   ZUO W, LU Y, ZHAO X, et al Cross-sectional shape design of automobile structure considering rigidity and driver's field of view[J]. Advances in Engineering Software, 2018, 115: 161- 167
doi: 10.1016/j.advengsoft.2017.09.006
[3]   HERRMANN C, DEWULF W, HAUSCHILD M, et al Life cycle engineering of lightweight structures[J]. CIRP Annals, 2018, 67 (2): 651- 672
doi: 10.1016/j.cirp.2018.05.008
[4]   LI Z, XU Z, SHU P Analysis and solution of flooding water problem for EV passenger compartment[J]. Automation, Control and Intelligent Systems, 2018, 6 (2): 20- 27
doi: 10.11648/j.acis.20180602.11
[5]   TAKAHASHI H, RURI N, NOBUTOSHI K. Development of evaluation system for automobile corrosion environment [C]// JJAP Conference Proceedings. Japan: The Japan Society of Applied Physics, 2016: 011402.
[6]   HOU B, LI X, MA X, et al The cost of corrosion in China[J]. NPJ Materials Degradation, 2017, 1 (1): 4
doi: 10.1038/s41529-017-0005-2
[7]   KALUZA A, KLEEMANN S, FR?HLICH T, et al Concurrent design and life cycle engineering in automotive lightweight component development[J]. Procedia Cirp, 2017, 66: 16- 21
doi: 10.1016/j.procir.2017.03.293
[8]   RAMNATH B V, ELANCHEZHIAN C, NAVEEN E, et al Implementation of concurrent redesign and manufacture procedure for an automotive component[J]. Materials Today: Proceedings, 2018, 5 (1): 1418- 1424
doi: 10.1016/j.matpr.2017.11.228
[9]   REZAPOUR S, HASSANI A, FARAHANI R Z Concurrent design of product family and supply chain network considering quality and price[J]. Transportation Research Part E: Logistics and Transportation Review, 2015, 81: 18- 35
doi: 10.1016/j.tre.2015.05.013
[10]   SHI J, LIU J, NING R, et al A collisions evaluation method in virtual environment for collaborative assembly[J]. Journal of Network and Computer Applications, 2013, 36 (6): 1523- 1530
doi: 10.1016/j.jnca.2013.01.003
[11]   DAMRATH F, STRAHILOV A, B?R T, et al Experimental validation of a physics-based simulation approach for pneumatic components for production systems in the automotive industry[J]. Procedia CIRP, 2015, 31: 35- 40
doi: 10.1016/j.procir.2015.03.078
[12]   BOUCHARD P O, LAURENT T, TOLLIER L Numerical modeling of self-pierce riveting: from riveting process modeling down to structural analysis[J]. Journal of Materials Processing Technology, 2008, 202 (1?3): 290- 300
doi: 10.1016/j.jmatprotec.2007.08.077
[13]   PASCARELLI C, LAZOI M, PAPADIA G, et al. CAD-VR integration as a tool for industrial assembly processes validation: a practical application [C]// International Conference on Augmented Reality, Virtual Reality and Computer Graphics. Cham: Springer, 2018: 435-450.
[14]   SONG I H, CHUNG S C Synthesis of the digital mock-up system for heterogeneous CAD assembly[J]. Computers in Industry, 2009, 60 (5): 285- 295
doi: 10.1016/j.compind.2008.09.004
[15]   COHEN Y A technique for integrated modelling of manual and automatic assembly[J]. Journal of Manufacturing Technology Management, 2015, 26 (2): 164- 181
doi: 10.1108/JMTM-11-2013-0157
[16]   COHRS M, KLIMKE S, ZACHMANN G Streamlining function-oriented development by consistent integration of automotive function architectures with CAD Models[J]. Computer-Aided Design and Applications, 2014, 11 (4): 399- 410
doi: 10.1080/16864360.2014.881182
[17]   GEWOHN M, BEYERER J, USL?NDER T, et al Smart information visualization for first-time quality within the automobile production assembly line[J]. IFAC-Papers On Line, 2018, 51 (11): 423- 428
doi: 10.1016/j.ifacol.2018.08.333
[18]   国家技术监督局.客车防雨密封性试验方法: GB/T 12480—2009 [S]. 北京: 中国标准出版社, 1990: 9.
[19]   YUN J, LEE S, JUNG Y Development of a gap searching program for automotive body assemblies based on a decomposition model representation[J]. Advances in Engineering Software, 2015, 81: 7- 16
doi: 10.1016/j.advengsoft.2014.10.003
[20]   YUN J, LEE S, FU J, et al Development of a backflow simulation program for automotive body assemblies[J]. International Journal of Automotive Technology, 2017, 18 (4): 613- 624
doi: 10.1007/s12239-017-0061-1
[21]   FU J, AN B, PARK R, et al. Visualization of gaps between sheet parts for watertightness of automobiles [M]. Information Science and Applications (ICISA) 2016. Singapore: Springer, 2016: 1127-1132.
[22]   LEE K. Principles of CAD/CAM/CAE systems [M]. East Rutherford: Prentice Hall PTR, 1999.
[23]   SCHWARZ M, SEIDEL H P Fast parallel surface and solid voxelization on GPUs[J]. ACM Transactions on Graphics, 2010, 29 (6): 179
[1] Shou-guo ZHENG,Yong-de ZHANG,Wen-tian XIE,Hu FAN,Qing WANG. Aircraft final assembly line modeling based on digital twin[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 843-854.
[2] Jun-xia JIANG,Xin-yuan ZHANG,Bang-ming TAO,Qun DONG. Design and experiment of remote handling motor replacement device based on passive compliant mechanism[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 855-865.
[3] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[4] Da-peng BAI,Bin ZHANG,Hao-cen HONG,Yang LI,Qing-hua JI,Hua-yong YANG. Biological 3D printer and topography detection of printing model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 289-298.
[5] Zhong-nan LI,Hai-bo ZHU,Yang ZHAO,Xue LUO,Rong-qiao XU. Thermal stress analysis and crack control of assembled bridge pier[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 46-54.
[6] Da-zhao DONG,Guan-hua XU,Ji-liang GAO,Yue-tong XU,Jian-zhong FU. Online correction algorithm for posture by robot assembly based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 145-152.
[7] Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.
[8] Hang-jian WENG,Xiao-juan DANG,Xiao-jing ZHANG. Energy absorption properties of tandem honeycomb with dislocated assembly[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2329-2335.
[9] Yue-dong JIN,Ru-hao WANG,Yang ZHAO. Experiment of six-member basic structure with a pre-embedded-bolt joint for single-layer latticed shells[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2100-2108.
[10] Lei GUO,Xiu-fen ZHANG. Remanufacturing parallel disassembly sequence planning method driven by multiple failures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2233-2246.
[11] Li DU,Biao MEI,Wei-dong ZHU,Zhen-zheng KE. Assembly variation prediction for compliant aeronautical structures using fuzzy interval analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1647-1655.
[12] Si-yuan REN,Bin GUO,Man ZHANG,Chao-gang YUE,Qing-yang LI,Zhi-wen YU. Urban profiling using express big data[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1779-1787.
[13] Peng ZHU,Jian-bo YU,Xiao-yun ZHENG,Yong-song WANG,Xi-wu SUN. Variation propagation network-based modeling and error tracing in mechanical assembling process[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1582-1593.
[14] Nan GAO,Jian LI,Rong-hao BAO,Wei-qiu CHEN. Study of band gaps of two-dimensional phononic crystals with criss-crossed elliptical holes[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 811-818.
[15] LOU Wen-juan, LIANG Hong-chao, BIAN Rong. Apply member loads to calculate wind load shape coefficient of angle-made-transmission tower[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1631-1637.