Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (12): 2329-2335    DOI: 10.3785/j.issn.1008-973X.2020.12.007
    
Energy absorption properties of tandem honeycomb with dislocated assembly
Hang-jian WENG1(),Xiao-juan DANG2,Xiao-jing ZHANG1,*()
1. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 201100, China
2. AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610091, China
Download: HTML     PDF(1427KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The effects of dislocated assembly on the mechanical properties of tandem honeycomb structure were investigated through flatwise compression experiments and full-scale finite element simulation in order to optimize the energy absorption property and enhance the designability of tandem honeycomb structures. Quasi-static out-of-plane compression experiments were carried out on Nomex honeycomb-cored sandwich structures, include three structural forms of single-layer honeycomb, double-layer aligned assembly honeycomb, and double-layer dislocated assembly honeycomb. The deformation processes and the compression response curves of the structures were recorded to analyze the structure deformation mechanism. Experimental results show that the double-layer tandem honeycomb can effectively improve the bearing capacity and the energy absorption property of the honeycomb structure compared to the single-layer honeycomb. Dislocated assembly causes two layers of honeycomb to deform at the same time. Compared with the aligned assembly honeycomb core, dislocated assembly can further increase the plateau stress, eliminate the second peak stress, and greatly improve the bearing capacity and the energy absorption effect. The finite element model which considers the honeycomb core detail was developed to simulate the dislocated assembly effect. The simulation results were in good agreement with the experimental data. The effects of different clapboard materials on the mechanical properties of tandem honeycombs were also verified by the numerical simulation.



Key wordstandem honeycomb      dislocated assembly      out-of-plane compression      energy absorption      finite element model     
Received: 09 November 2019      Published: 31 December 2020
CLC:  V 257  
Corresponding Authors: Xiao-jing ZHANG     E-mail: whjnuaa@163.com;zhangxj76@sjtu.edu.cn
Cite this article:

Hang-jian WENG,Xiao-juan DANG,Xiao-jing ZHANG. Energy absorption properties of tandem honeycomb with dislocated assembly. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2329-2335.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.12.007     OR     http://www.zjujournals.com/eng/Y2020/V54/I12/2329


错位装配串联蜂窝结构缓冲吸能特性

为优化串联蜂窝的缓冲吸能效果与增强蜂窝结构的可设计性,通过平压实验与全尺寸有限元模拟研究装配错位对于串联蜂窝结构力学性能的影响. 采用准静态面外压缩实验,对单层蜂窝、双层对位装配蜂窝、双层错位装配蜂窝3种形式的Nomex蜂窝夹层结构进行测试,通过结构变形过程和响应曲线分析变形机理. 实验结果表明,双层串联蜂窝相比单层蜂窝结构可以有效改善蜂窝结构的承载能力和吸能效果. 错位装配使两层蜂窝同时开始变形,相比对位装配能进一步提升平台应力,消除第2个峰值应力,承载能力和吸能效果均有较大提升. 有限元模型通过建立蜂窝细节模拟错位装配效果,模拟与实验结果具有良好的一致性,同时验证了不同材料隔层对串联蜂窝力学性能的影响.


关键词: 串联蜂窝,  错位装配,  面外压缩,  缓冲吸能,  有限元模型 
Fig.1 Direction and dimension of honeycomb core
Fig.2 Top view of tandem honeycomb with dislocated assembly
Fig.3 Honeycomb experiment specimens of each group
方向 E /GPa σy /MPa σcr /MPa εy εcr
横向 4.213 104 158.4 0.035 5 0.242 0
纵向 4.294 103 110.0 0.034 9 0.048 9
Tab.1 Tensile properties of thin film
Fig.4 Stress–strain curve of thin film
Fig.5 Deformation processes of honeycomb groups under flatwise compression
Fig.6 Average stress-strain curves of each group of honeycomb structures
组别 σc /MPa εc Ee /MPa σp /MPa Ea /J
C 1.93 0.022 5 110 1.27 46.88
CW 2.03 0.022 5 106 1.37 50.39
CWC 2.06 0.022 5 112 1.44 52.97
Tab.2 Honeycomb structure experimental performance parameters
Fig.7 Honeycomb structure energy absorption curves of each group
Fig.8 Typical finite element model of group CWC
Fig.9 Experiment and simulation deformation comparison of honeycomb structures(U3=2 mm)
Fig.10 Comparison of honeycomb structure experiment and simulation
组别 σc /MPa εc σp /MPa Ea /J
C 1.90 0.022 5 0.94 34.33
CW 2.02 0.022 5 1.03 37.26
CWC 2.03 0.022 5 1.12 39.32
Tab.3 Honeycomb structure simulation results
[1]   ROY R, NGUYEN K H, PARK Y B, et al Testing and modelling of Nomex? honeycomb sandwich panels with bolt insert[J]. Composite Part B: Engineering, 2014, 56: 762- 769
[2]   GILIOLI A, SBARUFATTI C, MANES A, et al Compression after impact test (CAI) on Nomex? honeycomb sandwich panels with thin aluminium skins[J]. Composite Part B: Engineering, 2014, 67: 313- 325
doi: 10.1016/j.compositesb.2014.07.015
[3]   PARK Y, KWEON J, CHOI J Failure characteristics of carbon/BMI-Nomex sandwich joints in various hygrothermal conditions[J]. Composite Part B: Engineering, 2014, 60: 213- 221
doi: 10.1016/j.compositesb.2013.12.035
[4]   王永宁. 铝蜂窝模型及其在汽车碰撞壁障数值模拟中的运用[D]. 上海: 上海交通大学, 2007.
WANG Yong-ning. Aluminum honeycomb model and its application in numerical simulation of automobile collision barriers [D]. Shanghai: Shanghai Jiao Tong University, 2007.
[5]   IVA?EZ I, SáNCHEZ-SAEZ S, GARCIA-CASTILLO S K, et al Impact response of repaired sandwich structures[J]. Polymer Composites, 2020, 41 (8): 3014- 3022
doi: 10.1002/pc.25593
[6]   李鹏, 周云波, 王显会, 等 含蜂窝夹层的V型底部复合装甲仿真研究[J]. 爆破, 2019, 36 (1): 44- 48
LI Peng, ZHOU Yun-bo, WANG Xian-hui, et al Simulation on V-shaped bottom composite armor with honeycomb sandwich[J]. Blasting, 2019, 36 (1): 44- 48
doi: 10.3963/j.issn.1001-487X.2019.01.007
[7]   曾福明, 杨建中, 朱汪, 等 月球着陆器着陆缓冲性能研究[J]. 航天器工程, 2010, (5): 43- 49
ZENG Fu-ming, YANG Jian-zhong, ZHU Wang, et al Research on landing impact attenuation performance of lunar lander[J]. Spacecraft Engineering, 2010, (5): 43- 49
doi: 10.3969/j.issn.1673-8748.2010.05.008
[8]   BOOPATHY V R, SRIRAMAN A, ARUMAIKKANNU G Energy absorbing capability of additive manufactured multi-material honeycomb structure[J]. Rapid Prototyping Journal, 2019, 25 (3): 623- 629
doi: 10.1108/RPJ-03-2018-0066
[9]   李萌, 刘荣强, 罗昌杰, 等 铝蜂窝串联缓冲结构静态压缩仿真与试验研究[J]. 振动与冲击, 2013, 32 (9): 50- 56
LI Meng, LIU Rong-qiang, LUO Chan-jie, et al Numerical and experimental analyses on series aluminum honeycomb structures under quasi-static load[J]. Journal of Vibration and Shock, 2013, 32 (9): 50- 56
doi: 10.3969/j.issn.1000-3835.2013.09.010
[10]   李翔城, 林玉亮, 卢芳云, 等 两种二级铝蜂窝结构缓冲吸能特性研究[J]. 中国测试, 2016, 42 (10): 100- 106
LI Xiang-cheng, LIN Yu-liang, LU Fang-yun, et al Studies on buffering and energy-absorption of two bilayer aluminum honeycomb structures[J]. China Measurement and Test, 2016, 42 (10): 100- 106
doi: 10.11857/j.issn.1674-5124.2016.10.019
[11]   WANG Z, LIU J, LU Z, et al Mechanical behavior of composited structure filled with tandem honeycombs[J]. Composites Part B: Engineering, 2017, 114: 128- 138
doi: 10.1016/j.compositesb.2017.01.018
[12]   王中钢, 鲁寨军 铝蜂窝异面压缩吸能特性实验评估[J]. 中南大学学报: 自然科学版, 2013, 44 (3): 1246- 1251
WANG Zhong-gang, LU Zhai-jun Experimental evaluation of energy absorption characteristics of aluminum honeycomb under different surface compression[J]. Journal of Central South University: Natural Science, 2013, 44 (3): 1246- 1251
[13]   ZHOU H, XU P, XIE S, et al Mechanical performance and energy absorption properties of structures combining two Nomex honeycombs[J]. Composite Structures, 2018, 185: 524- 536
doi: 10.1016/j.compstruct.2017.11.059
[14]   GIBSON L J, ASHBY M F. Cellular solids: structures and properties [M]. Cambridge: Cambridge University Press, 1997.
[15]   LIU L, FENG H, TANG H, et al Impact resistance of Nomex honeycomb sandwich structures with thin fibre reinforced polymer facesheets[J]. Journal of Sandwich Structures and Materials, 2018, 20 (5): 531- 552
[16]   Hexcel Composites. HexWeb honeycomb attributes and properties [M]. Stamford: Hexcel Corporation, 1999.
[17]   H?HNEL F, WOLF K. Evaluation of the material properties of resin-impregnate Nomex? paper as basis for the simulation of the impact behaviour of honeycomb sandwich [C]// Third international conference on composite testing and model identification 2006, Portugal: CompTest, 2006: 168-169.
[18]   ROY R, PARK S J, KWEON J H, et al Characterization of Nomex honeycomb core constituent material mechanical properties[J]. Composite Structures, 2014, 117: 255- 266
doi: 10.1016/j.compstruct.2014.06.033
[19]   KIM S J, JANG H Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp[J]. Tribology International, 2000, 33 (7): 477- 484
doi: 10.1016/S0301-679X(00)00087-6
[20]   LIU L, WANG H, GUAN Z Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading[J]. Composite Structures, 2015, 121: 304- 314
doi: 10.1016/j.compstruct.2014.11.034
[21]   XU S, BEYNON J H, RUAN D, et al Strength enhancement of aluminum honeycombs caused by entrapped air under dynamic out-of-plane compression[J]. International Journal of Impact Engineering, 2012, 47: 1- 13
doi: 10.1016/j.ijimpeng.2012.02.008
[1] Han-qing ZHUGE,Xu XIE,Yan-hua LIAO,Zhan-zhan TANG. Effect of transverse earthquake action on development of seismic damage of steel arch bridges[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 702-712.
[2] FANG Zhao, LI Ai-qun, LI Wan-run, SHEN Sheng. Verification on multi-scale finite element of wind-induced fatigue of steel structures[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1131-1139.
[3] QIAN Cheng, SHEN Guo-hui, GUO Yong, XING Yue-long. Influence of semi-rigid connections on wind-induced responses of transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1082-1089.
[4] YANG Shu, LIU Guo ping, QI Chang, WANG Da zhi. Simulation and optimization for anti-shock performances of graded metal hollow sphere foam structure[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1593-1599.
[5] HU Jian-hong, TANG Zhi-feng, LV Fu-zai, PAN Xiao-hong, HAN Ye, JIANG Xiao-Yong. Improved semi-analytical finite element modeling of axisymmetric guided wave modes in composite pipes[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 116-122.
[6] ZHAN Yong-zheng, WANG Guang-qing. Performance analysis and power optimization of piezoelectric #br# vibration energy harvester[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1248-1253.
[7] SONG Yue-chao, XU Bing, YANG Hua-yong, ZHANG Jun-hui. Modified practical approximate method for testing source flow of  piston pump[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 200-205.
[8] NIU Hui, WANG Jin-feng, ZHANG Yi-ping, ZHANG Zhi-cheng, YU Ya-nan. Study of incremental launching of space-curved butterfly-arch bridge[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1205-1212.
[9] QIAN Zhi-hong, TAO Wei-ming, YANG Xing-wang. Modeling and influences of imperfect interfaces
in multiferroic composites
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 935-940.
[10] WANG Wen-hao, GUO Ji-feng, HU Xi-xing. Conic section traveling ultrasonic motor with
high speed and efficiency
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(4): 754-758.