|
|
Energy absorption properties of tandem honeycomb with dislocated assembly |
Hang-jian WENG1( ),Xiao-juan DANG2,Xiao-jing ZHANG1,*( ) |
1. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 201100, China 2. AVIC Chengdu Aircraft Design and Research Institute, Chengdu 610091, China |
|
|
Abstract The effects of dislocated assembly on the mechanical properties of tandem honeycomb structure were investigated through flatwise compression experiments and full-scale finite element simulation in order to optimize the energy absorption property and enhance the designability of tandem honeycomb structures. Quasi-static out-of-plane compression experiments were carried out on Nomex honeycomb-cored sandwich structures, include three structural forms of single-layer honeycomb, double-layer aligned assembly honeycomb, and double-layer dislocated assembly honeycomb. The deformation processes and the compression response curves of the structures were recorded to analyze the structure deformation mechanism. Experimental results show that the double-layer tandem honeycomb can effectively improve the bearing capacity and the energy absorption property of the honeycomb structure compared to the single-layer honeycomb. Dislocated assembly causes two layers of honeycomb to deform at the same time. Compared with the aligned assembly honeycomb core, dislocated assembly can further increase the plateau stress, eliminate the second peak stress, and greatly improve the bearing capacity and the energy absorption effect. The finite element model which considers the honeycomb core detail was developed to simulate the dislocated assembly effect. The simulation results were in good agreement with the experimental data. The effects of different clapboard materials on the mechanical properties of tandem honeycombs were also verified by the numerical simulation.
|
Received: 09 November 2019
Published: 31 December 2020
|
|
Corresponding Authors:
Xiao-jing ZHANG
E-mail: whjnuaa@163.com;zhangxj76@sjtu.edu.cn
|
错位装配串联蜂窝结构缓冲吸能特性
为优化串联蜂窝的缓冲吸能效果与增强蜂窝结构的可设计性,通过平压实验与全尺寸有限元模拟研究装配错位对于串联蜂窝结构力学性能的影响. 采用准静态面外压缩实验,对单层蜂窝、双层对位装配蜂窝、双层错位装配蜂窝3种形式的Nomex蜂窝夹层结构进行测试,通过结构变形过程和响应曲线分析变形机理. 实验结果表明,双层串联蜂窝相比单层蜂窝结构可以有效改善蜂窝结构的承载能力和吸能效果. 错位装配使两层蜂窝同时开始变形,相比对位装配能进一步提升平台应力,消除第2个峰值应力,承载能力和吸能效果均有较大提升. 有限元模型通过建立蜂窝细节模拟错位装配效果,模拟与实验结果具有良好的一致性,同时验证了不同材料隔层对串联蜂窝力学性能的影响.
关键词:
串联蜂窝,
错位装配,
面外压缩,
缓冲吸能,
有限元模型
|
|
[1] |
ROY R, NGUYEN K H, PARK Y B, et al Testing and modelling of Nomex? honeycomb sandwich panels with bolt insert[J]. Composite Part B: Engineering, 2014, 56: 762- 769
|
|
|
[2] |
GILIOLI A, SBARUFATTI C, MANES A, et al Compression after impact test (CAI) on Nomex? honeycomb sandwich panels with thin aluminium skins[J]. Composite Part B: Engineering, 2014, 67: 313- 325
doi: 10.1016/j.compositesb.2014.07.015
|
|
|
[3] |
PARK Y, KWEON J, CHOI J Failure characteristics of carbon/BMI-Nomex sandwich joints in various hygrothermal conditions[J]. Composite Part B: Engineering, 2014, 60: 213- 221
doi: 10.1016/j.compositesb.2013.12.035
|
|
|
[4] |
王永宁. 铝蜂窝模型及其在汽车碰撞壁障数值模拟中的运用[D]. 上海: 上海交通大学, 2007. WANG Yong-ning. Aluminum honeycomb model and its application in numerical simulation of automobile collision barriers [D]. Shanghai: Shanghai Jiao Tong University, 2007.
|
|
|
[5] |
IVA?EZ I, SáNCHEZ-SAEZ S, GARCIA-CASTILLO S K, et al Impact response of repaired sandwich structures[J]. Polymer Composites, 2020, 41 (8): 3014- 3022
doi: 10.1002/pc.25593
|
|
|
[6] |
李鹏, 周云波, 王显会, 等 含蜂窝夹层的V型底部复合装甲仿真研究[J]. 爆破, 2019, 36 (1): 44- 48 LI Peng, ZHOU Yun-bo, WANG Xian-hui, et al Simulation on V-shaped bottom composite armor with honeycomb sandwich[J]. Blasting, 2019, 36 (1): 44- 48
doi: 10.3963/j.issn.1001-487X.2019.01.007
|
|
|
[7] |
曾福明, 杨建中, 朱汪, 等 月球着陆器着陆缓冲性能研究[J]. 航天器工程, 2010, (5): 43- 49 ZENG Fu-ming, YANG Jian-zhong, ZHU Wang, et al Research on landing impact attenuation performance of lunar lander[J]. Spacecraft Engineering, 2010, (5): 43- 49
doi: 10.3969/j.issn.1673-8748.2010.05.008
|
|
|
[8] |
BOOPATHY V R, SRIRAMAN A, ARUMAIKKANNU G Energy absorbing capability of additive manufactured multi-material honeycomb structure[J]. Rapid Prototyping Journal, 2019, 25 (3): 623- 629
doi: 10.1108/RPJ-03-2018-0066
|
|
|
[9] |
李萌, 刘荣强, 罗昌杰, 等 铝蜂窝串联缓冲结构静态压缩仿真与试验研究[J]. 振动与冲击, 2013, 32 (9): 50- 56 LI Meng, LIU Rong-qiang, LUO Chan-jie, et al Numerical and experimental analyses on series aluminum honeycomb structures under quasi-static load[J]. Journal of Vibration and Shock, 2013, 32 (9): 50- 56
doi: 10.3969/j.issn.1000-3835.2013.09.010
|
|
|
[10] |
李翔城, 林玉亮, 卢芳云, 等 两种二级铝蜂窝结构缓冲吸能特性研究[J]. 中国测试, 2016, 42 (10): 100- 106 LI Xiang-cheng, LIN Yu-liang, LU Fang-yun, et al Studies on buffering and energy-absorption of two bilayer aluminum honeycomb structures[J]. China Measurement and Test, 2016, 42 (10): 100- 106
doi: 10.11857/j.issn.1674-5124.2016.10.019
|
|
|
[11] |
WANG Z, LIU J, LU Z, et al Mechanical behavior of composited structure filled with tandem honeycombs[J]. Composites Part B: Engineering, 2017, 114: 128- 138
doi: 10.1016/j.compositesb.2017.01.018
|
|
|
[12] |
王中钢, 鲁寨军 铝蜂窝异面压缩吸能特性实验评估[J]. 中南大学学报: 自然科学版, 2013, 44 (3): 1246- 1251 WANG Zhong-gang, LU Zhai-jun Experimental evaluation of energy absorption characteristics of aluminum honeycomb under different surface compression[J]. Journal of Central South University: Natural Science, 2013, 44 (3): 1246- 1251
|
|
|
[13] |
ZHOU H, XU P, XIE S, et al Mechanical performance and energy absorption properties of structures combining two Nomex honeycombs[J]. Composite Structures, 2018, 185: 524- 536
doi: 10.1016/j.compstruct.2017.11.059
|
|
|
[14] |
GIBSON L J, ASHBY M F. Cellular solids: structures and properties [M]. Cambridge: Cambridge University Press, 1997.
|
|
|
[15] |
LIU L, FENG H, TANG H, et al Impact resistance of Nomex honeycomb sandwich structures with thin fibre reinforced polymer facesheets[J]. Journal of Sandwich Structures and Materials, 2018, 20 (5): 531- 552
|
|
|
[16] |
Hexcel Composites. HexWeb honeycomb attributes and properties [M]. Stamford: Hexcel Corporation, 1999.
|
|
|
[17] |
H?HNEL F, WOLF K. Evaluation of the material properties of resin-impregnate Nomex? paper as basis for the simulation of the impact behaviour of honeycomb sandwich [C]// Third international conference on composite testing and model identification 2006, Portugal: CompTest, 2006: 168-169.
|
|
|
[18] |
ROY R, PARK S J, KWEON J H, et al Characterization of Nomex honeycomb core constituent material mechanical properties[J]. Composite Structures, 2014, 117: 255- 266
doi: 10.1016/j.compstruct.2014.06.033
|
|
|
[19] |
KIM S J, JANG H Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp[J]. Tribology International, 2000, 33 (7): 477- 484
doi: 10.1016/S0301-679X(00)00087-6
|
|
|
[20] |
LIU L, WANG H, GUAN Z Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading[J]. Composite Structures, 2015, 121: 304- 314
doi: 10.1016/j.compstruct.2014.11.034
|
|
|
[21] |
XU S, BEYNON J H, RUAN D, et al Strength enhancement of aluminum honeycombs caused by entrapped air under dynamic out-of-plane compression[J]. International Journal of Impact Engineering, 2012, 47: 1- 13
doi: 10.1016/j.ijimpeng.2012.02.008
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|