Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (4): 702-712    DOI: 10.3785/j.issn.1008-973X.2019.04.011
    
Effect of transverse earthquake action on development of seismic damage of steel arch bridges
Han-qing ZHUGE1(),Xu XIE1,*(),Yan-hua LIAO1,Zhan-zhan TANG2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. College of Civil Science and Engineering, Yangzhou University, Yangzhou 225127, China
Download: HTML     PDF(2079KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A real half-through steel arch bridge was considered as an example in order to analyze the influence of transverse earthquake action on the seismic damage development of steel arch bridges. A full-bridge hybrid finite element (FE) model considering local deformation effect in the damaged zone was constructed. Damage development of the steel arch bridge under three-dimensional and in-plane earthquake actions were compared according to elastoplastic seismic response calculation results under seismic loads with different peak accelerations. Results show that input of transverse ground motion will not change the in-plane displacement response and the location of plastic damaged zone of the steel arch bridge, but will increase the degree of local deformation of steel plates and accelerate the development of ultra-low-cycle fatigue damage at welded joints, thus increase the risk of localized instability and ultra-low-cycle fatigue failure of the structure. Three-dimensional earthquake actions should be considered to ensure the seismic safety of structures in the seismic design for steel arch bridges.



Key wordshalf-through steel arch bridge      three-dimensional seismic load      hybrid finite element model      local deformation of steel plate      ultra-low-cycle fatigue damage     
Received: 27 March 2018      Published: 28 March 2019
CLC:  U 448  
Corresponding Authors: Xu XIE     E-mail: 11512058@zju.edu.cn;xiexu@zju.edu.cn
Cite this article:

Han-qing ZHUGE,Xu XIE,Yan-hua LIAO,Zhan-zhan TANG. Effect of transverse earthquake action on development of seismic damage of steel arch bridges. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 702-712.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.04.011     OR     http://www.zjujournals.com/eng/Y2019/V53/I4/702


横桥向地震作用对钢拱桥地震损伤发展的影响

为了研究横桥向地震作用对钢拱桥结构地震损伤发展的影响,以一座实际中承式钢拱桥为对象,建立考虑损伤区局部变形影响的全桥混合有限元(FE)模型. 通过对结构进行不同峰值加速度地震作用下的弹塑性地震反应计算,对比分析在空间三维地震作用和仅在桥梁面内地震作用下钢拱桥的损伤发展情况. 结果表明,横桥向地震动输入虽然不改变钢拱桥面内的位移时程响应及地震塑性损伤区域的分布位置,但会增大钢板发生局部变形的程度并加速焊接节点超低周疲劳损伤的发展,从而增大结构发生局部失稳破坏和超低周疲劳破坏的可能性. 在钢拱桥的抗震设计中宜同时考虑3个方向的地震作用,以确保结构的抗震安全.


关键词: 中承式钢拱桥,  空间三维地震作用,  混合有限元模型,  钢板局部变形,  超低周疲劳损伤 
Fig.1 Overview of half-through steel arch bridge
Fig.2 Main section of steel arch bridge
Fig.3 Analysis model for seismic response of half-through steel arch bridge
$E_{\rm st}^{\rm P}$/GPa $\varepsilon _{\rm st}^{\rm P}$ M $E_{0i}^{\rm P}$/GPa ω/MPa?1 ${\overline \kappa _0}$/MPa σu/MPa
4.47 1.53×10?2 ?0.142 1.43 1.61×10?2 412.2 636.4
ζ e f0/GPa a b c α
307.4 470 0.53 ?0.358 21.4 1.03 0.343
Tab.1 Main parameters of modified two surface model for Q345qC steel[20]
Fig.4 Fiber division of main sections of arch bridge
模态 f/Hz X Y Z
有效质量率 累积质量率 有效质量率 累积质量率 有效质量率 累积质量率
1 0.657 0.14 0.14 0.00 0.00 0.00 0.00
2 0.875 0.00 0.14 0.89 0.89 0.00 0.00
3 1.083 0.00 0.14 0.00 0.89 0.00 0.00
4 1.235 0.00 0.14 0.00 0.89 0.30 0.30
5 1.544 0.00 0.14 0.01 0.90 0.00 0.30
6 1.582 0.50 0.64 0.00 0.90 0.00 0.30
7 1.642 0.00 0.64 0.00 0.90 0.00 0.30
8 1.736 0.00 0.64 0.00 0.90 0.60 0.90
9 2.062 0.00 0.64 0.00 0.90 0.01 0.91
10 2.121 0.00 0.64 0.01 0.91 0.00 0.91
11 2.231 0.00 0.64 0.00 0.91 0.00 0.91
12 2.459 0.00 0.64 0.00 0.91 0.00 0.91
13 2.588 0.00 0.64 0.09 1.00 0.00 0.91
14 2.749 0.30 0.94 0.00 1.00 0.00 0.91
15 3.127 0.00 0.94 0.00 1.00 0.09 1.00
Tab.2 Natural vibration characteristics of half-through steel arch bridge
顺桥向卓越振型 横桥向卓越振型
Tab.3 Predominant modes of steel arch bridge in longitudinal and transverse direction
Fig.5 Seismic wave input and response spectrum
Fig.6 Axial force time history response at 1/4 span of arch rib (PGA=6 m/s2
Fig.7 Displacement time history response at 1/4 span of arch rib (PGA=6 m/s2
Fig.8 Seismic plastic zone distribution in shell-element segments
Fig.9 Local deformation of seismic plastic zone at moment with maximum displacement response
Fig.10 Semi-circular plastic strain range under random cyclic load
Fig.11 Size of ultra-low-cycle fatigue specimens
Fig.12 Schematic diagram of loading and measurement for base metal specimens and welding specimens
Fig.13 Plastic strain-life curve of base metal and welded specimen
材料 k C
母材 0.655 0 1.043 9
焊接 0.678 6 0.761 8
Tab.4 Material parameters of Coffin-Manson formula
材料 ${\rm VGI}_{\rm mon}^{\rm cri} $ λ l*/mm
下限 平均值 上限
母材 2.55 0.20 0.087 0.201 0.473
焊材 2.63 0.25 0.062 0.202 0.311
热影响区 2.53 0.33 0.072 0.329 0.671
Tab.5 CVGM parameters of micromechanical fracture criteria of Q345 steel[33]
σ|0/MPa Q/MPa biso Ckin,i/MPa
391.2 21 10 1 800
γ1 γ2 γ3 γ4
245 155 50 30
Tab.6 Chaboche combined hardening model parameters of Q345qC steel
Fig.14 Partial calculation model for ultra-low-cycle fatigue verification
Fig.15 VGI evolution process of calculated element at heat affected zone
Fig.16 Development of ultra-low-cycle fatigue damage indexes from two prediction methods
[1]   KAWASHIMA K, UNJOH S The damage of highway bridges in the 1995 Hyogo-Ken Nanbu earthquake and its impact on Japanese seismic design[J]. Journal of Earthquake Engineering, 1997, 1 (3): 505- 541
[2]   USAMI T. Guidelines for seismic and damage control design of steel arch bridges [M]. Tokyo: Gihodo Shuppan Co. Ltd., 2007.
[3]   GAO S, USAMI T, GE H Ductility evaluation of steel bridge piers with pipe-sections[J]. Journal of Engineering Mechanics, 1998, 124 (3): 260- 267
doi: 10.1061/(ASCE)0733-9399(1998)124:3(260)
[4]   USAMI T, GE H Cyclic behavior of thin-walled steel structures: numerical analysis[J]. Thin-Walled Structure, 1998, 32 (1-3): 41- 80
doi: 10.1016/S0263-8231(98)00027-5
[5]   USAMI T, GE H, GAO S Stiffened steel box columns. Part 2: ductility evaluation[J]. Earthquake Engineering and Structural Dynamics, 2000, 29 (11): 1707- 1722
[6]   WATANABE E, SUGIURA K, OYAWA W O Effects of multi-directional displacement paths on the cyclic behavior of rectangular hollow steel column[J]. Journal of Structural Engineering and Earthquake Engineering, 2000, 17 (1): 79- 94
[7]   DANG J, NAKAMURA T, AOKI T, et al Bi-directional loading hybrid test of square section steel piers[J]. Journal of Structural Engineering, 2010, 56A: 367- 380
[8]   GOTO Y, JIANG K, OBATA M Stability and ductility of thin-walled circular steel columns under cyclic bidirectional loading[J]. Journal of Structural Engineering, 2006, 132 (10): 1621- 1631
doi: 10.1061/(ASCE)0733-9445(2006)132:10(1621)
[9]   GOTO Y, MURAKI K, OBATA M Ultimate state of thin-walled circular steel columns under bidirectional seismic accelerations[J]. Journal of Structural Engineering, 2009, 135 (12): 1481- 1490
doi: 10.1061/(ASCE)ST.1943-541X.0000076
[10]   GOTO Y, JIANG K, OBATA M Hysteretic behavior of thin-walled stiffened rectangular steel columns under cyclic bi-axial loading[J]. Journal of Japan Society of Civil Engineers, 2007, 63 (1): 122- 141
[11]   GOTO Y, KOYAMA R, FUJII Y, et al Ultimate state of thin-walled stiffened rectangular steel columns under bi-directional seismic excitations[J]. Journal of Japan Society of Civil Engineers, 2009, 65 (1): 61- 80
[12]   NONAKA T, ALI A Dynamic response of half-through steel arch bridge using fiber model[J]. Journal of Bridge Engineering, 2001, 6 (6): 482- 488
doi: 10.1061/(ASCE)1084-0702(2001)6:6(482)
[13]   USAMI T, LU Z, GE H, et al Seismic performance evaluation of steel arch bridges against major earthquakes. Part 1: dynamic analysis approach[J]. Earthquake Engineering and Structural Dynamics, 2004, 33 (14): 1337- 1354
doi: 10.1002/(ISSN)1096-9845
[14]   LU Z, USAMI T, GE H, Seismic performance evaluation of steel arch bridges against major earthquakes Part 2: simplified verification procedure[J]. Earthquake Engineering and Structural Dynamics, 2010, 33 (14): 1355- 1372
[15]   CETINKAYA O T, NAKAMUR S, TAKAHASHI K Expansion of a static analysis-based out-of-plane maximum inelastic seismic response estimation method for steel arch bridges to in-plane response estimation[J]. Engineering Structures, 2009, 31 (9): 2209- 2212
doi: 10.1016/j.engstruct.2009.02.045
[16]   谢旭, 唐站站, 胡欣科, 等 纤维模型在钢拱桥抗震设计中的适用性研究[J]. 中国公路学报, 2015, 28 (2): 33- 42
XIE Xu, TANG Zhan-zhan, HU Xin-ke, et al Study on application of fiber model In seismic design for steel arch bridge[J]. China Journal of Highway and Transport, 2015, 28 (2): 33- 42
doi: 10.3969/j.issn.1001-7372.2015.02.005
[17]   JTG D64-2015, 公路钢结构桥梁设计规范[S]. 北京: 人民交通出版社, 2015.
[18]   SHEN C, MIZUNO E, USAMI T A generalized two-surface model for structural steels under cyclic loading[J]. Journal of Structural Mechanics and Earthquake Engineering, JSCE, 1993, 471 (I-2): 23- 33
[19]   SHEN C, MAMAGHANI I, MIZUNO E, et al Cyclic behavior of structural steel, II: theory[J]. Journal of Engineering Mechanics, ASCE, 1995, 121 (11): 1165- 1172
doi: 10.1061/(ASCE)0733-9399(1995)121:11(1165)
[20]   王彤. 桥梁结构钢材滞回本构模型改进及其应用研究[D]. 杭州: 浙江大学, 2016.
WANG Tong. Improvement of the hysteresis constitutive model of bridge structure steel and its application [D]. Hangzhou: Zhejiang University, 2016.
[21]   CHEN W, DUAN L. Bridge engineering handbook: Seismic design[M]. Boca Raton: CRC Press, 2014.
[22]   日本道路协会. 日本道路桥示方书(抗震设计篇)[S]. 东京: 丸善出版株式会社, 2017.
[23]   CJJ 166-2011, 城市桥梁抗震设计规范[S]. 北京: 中国建筑工业出版社, 2011.
[24]   GE H, TSUMURA Y Experimental and analytical study on the evaluation of ductile crack initiation in steel bridge piers[J]. Journal of Structural Engineering, 2004, 50A: 1427- 1436
[25]   GE H, LUO X A seismic performance evaluation method for steel structures against local buckling and extra-low cycle fatigue[J]. Journal of Earthquake and Tsunami, 2011, 5 (2): 83- 99
doi: 10.1142/S1793431111001005
[26]   GE H, KANG L Ductile crack initiation and propagation in steel bridge piers subjected to random cyclic loading[J]. Engineering Structures, 2014, 59: 809- 820
doi: 10.1016/j.engstruct.2013.12.006
[27]   TATEISHI K, HANJI T Low cycle fatigue strength of butt-welded steel joint by means of new testing system with image technique[J]. International Journal of Fatigue, 2004, 26 (12): 1349- 1356
doi: 10.1016/j.ijfatigue.2004.03.016
[28]   TATEISHI K, HANJI T, MINAMI K A prediction model for extremely low cycle fatigue strength of structural steel[J]. International Journal of Fatigue, 2007, 29 (5): 887- 896
doi: 10.1016/j.ijfatigue.2006.08.001
[29]   KANVINDE A, DEIERLEIN G Void growth model and stress modified critical strain model to predict ductile fracture in structural steels[J]. Journal of Structural Engineering, 2006, 132 (12): 1907- 1918
doi: 10.1061/(ASCE)0733-9445(2006)132:12(1907)
[30]   KANVINDE A, DEIERLEIN G Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J]. Journal of Engineering Mechanics, 2007, 133 (6): 701- 712
doi: 10.1061/(ASCE)0733-9399(2007)133:6(701)
[31]   ZHOU H, WANG Y, SHI Y, et al Extremely low cycle fatigue prediction of steel beam-to-column connection by using a micro-mechanics based fracture model[J]. International Journal of Fatigue, 2013, 48 (2): 90- 100
[32]   廖燕华. 钢桥焊接节点超低周疲劳性能与断裂机理研究[D]. 杭州: 浙江大学, 2018.
LIAO Yan-hua. Research on ultra low cycle fatigue properties and fracture mechanism of steel bridge welded joint [D]. Hangzhou: Zhejiang University, 2018.
[33]   LIAO F, WANG W, CHEN Y Parameter calibrations and application of micromechanical fracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42 (2): 153- 174
doi: 10.12989/sem.2012.42.2.153
[1] Wen-tao YU,Xu XIE,Cheng CHENG. Effects of welding details on ultra-low cycle fatigue performance of T-welded joint[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 31-37.
[2] Xian-rong DAI,Lu WANG,Chang-jiang WANG,Xiao-yang WANG,Rui-li SHEN. Anti-slip scheme of full-vertical friction plate for multi-pylon suspension bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1697-1703.
[3] LU Nai wei, LUO Yuan, WANG Qin yong, Noori Mohammad. Dynamic reliability assessment for long-span bridges under vehicle load[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2328-2335.
[4] XIAO Xin hui, LU Nai wei, LIU Yang. Fatigue reliability assessment for  highway steel bridges under stochastic traffic flow[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1777-1783.
[5] WANG Cheng quan, SHEN Yong gang, WANG Gang, XIE Xu. Field tests on mechanical characteristic of link slab on hollow-cored slab beam bridge[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1438-1445.
[6] LIU Yang, ZHANG Hai ping, DENG Yang, Li Ming. Fatigue damage analysis on simple supported bridge under overloading[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2172-2178.
[7] WANG Gang, XIE Xu, WANG Cheng-quan, SHEN Yong-gang. Mechanical performance of arch-type continuous slab-deck on simply-supported girder bridge[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1049-1057.
[8] WANG Tong, XIE Xu, WANG Yuan, SHI Peng-cheng. Analysis of prestressed composite truss girders with steel truss webs[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 711-720.
[9] YUAN Pei, XIE Xu, SHEN Yong-gang. Identification method for tensile force in hanger  of arch bridges
with  damper and its application
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1592-1598.
[10] HUANG Hai-yan, XIE Xu, WU Dong-yan, WANG Rong-fu, WANG Yuan. Damping characteristics of PC partial cable-stayed bridge[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 804-810.
[11] XIE Xu, LI Ji-Long, DIAO Dun-Liang, ZHANG He, SHAN Xia-Gan-Fu. Identification method of vehicle parameters based on genetic algorithms[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1818-1824.
[12] XIE Xu, TUN Dong-Yan, WANG Jian-Feng, et al. Dynamical behavior of steel box girder bridges due to vehicle-induced vibration at expansion joint[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(10): 1923-1930.