Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Chemical and Environmental engineering     
Fatigue reliability assessment for  highway steel bridges under stochastic traffic flow
XIAO Xin hui, LU Nai wei, LIU Yang
1. School of Civil Engineering and Architecture, Changsha University of Science and Technology, Changsha 410114, China;
2. Hunan Province Engineering Laboratory of Bridge Structure, Changsha University of Science and Technology, Changsha 410114, China; 
3. School of Civil Engineering, Southeast University, Nanjing 210096
Download:   PDF(1364KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A stochastic traffic flow model was presented and improved by the typical fatigue vehicles to establish the probability models of fatigue stress for steel highway bridges under vehicle loads. The response surface method (RSM) was applied to analyze the probability of fatigue stress of steel highway bridges under the stochastic traffic flow. Fatigue damage performance functions were established by considering parameters in the stochastic traffic flow model, which included the influence on fatigue reliability caused by the increase of traffic volume and vehicle weight. Results indicate that the RSM method is efficient for fatigue stress analysis of steel highway bridges under stochastic traffic flow. The increase of vehicle weight and vehicle volume has significant influence on the fatigue reliability of steel bridges. When the growth factor of traffic volume is more than 3% or that of traffic weight is more than 0.4%, the fatigue reliability index of a steel bridge is less than the design reliability index. The stochastic traffic flow model is suitable for the probability analysis of fatigue stress and the fatigue reliability assessment of highway bridges.



Published: 22 September 2016
CLC:  U 441  
  U 448.21  
Cite this article:

XIAO Xin hui, LU Nai wei, LIU Yang. Fatigue reliability assessment for  highway steel bridges under stochastic traffic flow. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1777-1783.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.09.19     OR     http://www.zjujournals.com/eng/Y2016/V50/I9/1777


随机车流下公路钢桥疲劳可靠度分析

为了建立车载下公路钢桥疲劳应力概率模型,将典型疲劳车辆改进为随机车流模型,提出基于响应面法(RSM)的随机车流下钢桥疲劳应力概率分析方法.建立考虑随机车流参数的疲劳损伤功能函数,分析交通量和车重增长对疲劳可靠度的影响.研究结果表明,基于RSM的有限元模型替代方法可以高效地分析随机车流下钢桥的疲劳应力|车重和交通量的增长对桥梁的疲劳可靠度有较大的影响,在交通量增长系数达到3%或车重增长系数达到0.4%时,某钢箱梁桥在设计基准期内的可靠指标低于目标可靠指标.随机车流模型在桥梁疲劳应力概率分析与可靠度评估中具有较好的适用性.

[1] 吉伯海, 傅中秋. 近年国内桥梁倒塌事故原因分析[J]. 土木工程学报, 2010, 43(1): 495-498.
JI Bohai, FU Zhongqiu. Analysis of Chinese bridge collapse accident causes in recent years [J]. China Civil Engineering Journal, 2010, 43(1): 495-498.
[2] CHEN Z W, XU Y L, WANG X M. SHMSbased fatigue reliability analysis of multiloading suspension bridges [J]. Journal of Structural Engineering, 2011, 138(3): 299-307.
[3] ZHANG W, CAI C S. Fatigue reliability assessment for existing bridges considering vehicle speed and road surface conditions [J]. Journal of Bridge Engineering, 2011, 17(3): 443-453.
[4] WANG C S, HAO L, FU B N. Fatigue Reliability updating evaluation of existing steel bridges [J]. Journal of Bridge Engineering, 2012, 18(6): 955-965.
[5] ZHONG J, HUANG K, LI X. Proposed standard fatigue truck in montane speedway of southwest China [J]. Applied Mechanics and Materials, 2011, 9093: 1239-1244.
[6] 阮欣, 周军勇, 石雪飞. 随机车流作用下多塔斜拉桥总体荷载响应特性 [J]. 同济大学学报:自然科学版, 2014, 42(1): 25-30.
RUAN Xin, ZHOU Junyong, SHI Xuefei. Overall vehicle load response characteristic of multispan cablestayed bridge under stochastic traffic flow [J]. Journal of Tongji Univeristy:Natural Science, 2014, 42(1): 25-30.
[7] 王达, 刘扬, 黄平明. 随机车流作用下双曲拱桥车桥耦合振动研究 [J]. 中国公路学报, 2009, 22(6): 67-73.
WANG Da, LIU Yang, HUANG Pingmin. Research on vehiclebridge coupled vibration for twoway curved arch bridge under stochastic traffic flow [J]. China Journal of Highway and Transport, 2009, 22(6): 67-73.
[8] CHEN S R, WU J. Modeling stochastic live load for longspan bridge based on microscopic traffic flow simulation [J]. Computers and Structures, 2011, 89(9): 813-824.
[9] WANG Y L, GAO Z Y, WANG Z B, et al. A case study of traffic load for longSpan suspension bridges [J]. Structural Engineering International, 2014, 24(3): 352-360.
[10] 周泳涛, 鲍卫刚, 翟辉, 等. 公路钢桥疲劳设计荷载标准研究 [J]. 土木工程学报, 2010, 43(11): 79-85.
ZHOU YongTao, BAO Weigang, ZAI Hui.et al. Study of standard fatigue design load for steel highway bridge [J]. China Civil Engineering Journal, 2010, 43(11): 79-85.
[11] 韩万水, 闫君媛, 武隽, 等. 基于长期监测的特重车交通荷载特性及动态过桥分析 [J]. 中国公路学报, 2014, 27(2): 54-61.
HAN Wanshui, YAN Junyuan, WU Jun, et al. Extraheavy truck load features and bridge dynamic response based on longterm traffic monitoring record [J]. China Journal of Highway and Transport, 2014, 27(2): 54-61.
[12] SOLIMAN M, FRANGOPOL D, KIM S. Probabilistic optimum inspection planning of steel bridges with multiple fatigue sensitive details [J]. Engineering Structures, 2013, 49: 996-1006.
[13] 邓扬, 李爱群, 刘扬, 等. 钢桥疲劳荷载效应监测数据概率建模与疲劳可靠性分析方法 [J]. 土木工程学报, 2014, 27(7): 79-87.
DENG Yang, LI Aiqun, LIU Yang, et al. Probabilistic modeling of fatigue loading effects and fatigue reliability evaluation for steel bridges based on monitored data [J]. China Civil Engineering Journal, 2014, 27(7): 79-87.
[14] LIU Y, LU N, NOORI M, et al. System reliabilitybased optimization for truss structures using genetic algorithm and neural network [J]. International Journal of Reliability and Safety, 2014, 8(1): 51-69.
[15] DAI H, ZHANG H, WANG W, et al. Structural reliability assessment by local approximation of limit state functions using adaptive Markov chain simulation and support vector regression [J]. ComputerAided Civil and Infrastructure Engineering, 2012, 27(9): 676-686.
[16] 邓扬, 刘扬, 李爱群. 局部构造对钢箱梁关键焊缝疲劳性能的影响分析 [J]. 桥梁建设, 2014, 44(2): 43-49.
DENG Yang, LIU Yang, LI Aiqun. Analysis of effect of local structure on fatigue performance of critical welding seams of steel box girder [J]. Bridge Construction, 2014, 44(2): 43-49.
[17] CAPRANI C. Lifetime highway bridge traffic load effect from a combination of traffic states allowing for dynamic amplification [J]. Journal of Bridge Engineering, 2012, 18(9): 901-909.
[18] 叶肖伟, 傅大宝, 倪一清, 等. 考虑多因素共同作用的钢桥焊接节点疲劳可靠度评估[J]. 土木工程学报, 2013, 46(10): 89-99.
YE XiaoWei, FU Dabao, NI Yiqing, et al. Fatigue reliability assessment of welded joints in steel bridges considering multiple effects [J]. China Civil Engineering Journal, 2013, 46(10): 89-99.

[1] LI Ming, LIU Yang, TANG Xue-song. Trans-scale analysis for fatigue crack[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 524-531.
[2] LIAO Xiao wei, WANG Yuan qing, ZONG Liang, SHI Gang. Fatigue analysis of typical welded joints of steel bridges using effective notch stress approach[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 1-8.
[3] SUN Ke, ZHANG Yan qing. Damage identification of small radius curved bridge based on curvature of displacement influence line[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 727-734.
[4] JIANG Zheng-wen, WAN Shui, LI Ming-hong, MA Lei. Hybrid simulation method for structural reliability analysis and its application[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 782-791.
[5] DI Sheng-kui, WEN Cheng, YE Xiao-wei. Finite element analysis of structural hot-spot stress for orthotropic steel bridge deck[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 225-231.
[6] DING Yong, XIE Xu, GOU Chan-ghuan, HUANG Jian-yuan. Research on computational method and dynamic characteristics of
traffic vibration of steel bridge
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(6): 1107-1114.
[7] GUO Zeng-wei, GE Yao-jun, LU An-ping. Parameter optimization of TMD for vortex-induced vibration control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(1): 8-13.
[8] SHU E-Na, ZHANG Wei, SHEN Yong-Gang. Control measures for preventing crack on the surface
of mass concrete abutment in early stage
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(8): 1621-1628.