Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (12): 2321-2328    DOI: 10.3785/j.issn.1008-973X.2020.12.006
    
Synergistic flame retardancy of gas phase and condensed phase of PC/ABS alloy
Shun GAO(),Zheng-hong GUO*()
Laboratory of Polymer Material and Engineering, NingboTech University, Ningbo 315100, China
Download: HTML     PDF(1228KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Two kinds phosphorus flame retardants, resorcinol bis (diphenyl phosphate) (RDP) (mainly condensed phase flame retardant) and triphenyl phosphate (TPP) (mainly gaseous phase flame retardant), were selected to prepare flame retardant polycarbonate (PC) /acrylonitrile-butadiene-styrene copolymer (ABS) alloy by melt blending.The effects of RDP/TPP on the flame retardancy of the alloy were investigated by vertical combustion test and cone calorimetry. The micro morphology of the carbon residue was observed by scanning electron microscope (SEM). The toughening and compatibilizing effect of methyl methacrylate-butadiene-styrene (MBS) on the flame retardant alloy was studied by tensile and impact tests, and the effects of MBS on the phase interface and the morphology of the alloy were observed by SEM. Results show that the condensed phase flame retardant of RDP and the gas phase flame retardant of TPP have synergistic effect, which can promote the formation of phosphate structure in PC/ABS alloy, thus help the system to form a continuous and compact carbon layer.



Key wordsPC/ABS      gas phase      condensed phase      flame retardant      compatibility     
Received: 19 November 2019      Published: 31 December 2020
CLC:  TB 324  
Corresponding Authors: Zheng-hong GUO     E-mail: 2066453523@qq.com;guozhenghong@nit.zju.edu.cn
Cite this article:

Shun GAO,Zheng-hong GUO. Synergistic flame retardancy of gas phase and condensed phase of PC/ABS alloy. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2321-2328.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.12.006     OR     http://www.zjujournals.com/eng/Y2020/V54/I12/2321


PC/ABS合金的气相/凝聚相协同阻燃作用

分别选用2种不同阻燃机理的磷系阻燃剂,即以凝聚相阻燃为主的间苯二酚-双(二苯基磷酸酯) (RDP)和以气相阻燃为主的磷酸三苯酯(TPP),采用熔融共混法制备聚碳酸酯(PC)/丙烯腈-丁二烯-苯乙烯共聚物(ABS)阻燃合金. 通过垂直燃烧测试和锥形量热测试探究RDP/TPP复配对合金阻燃性能的影响,通过扫描电子显微镜(SEM)观察燃烧残炭的微观形貌. 以甲基丙烯酸甲酯-丁二烯-苯乙烯(MBS)为相容剂,通过拉伸性能和冲击性能测试探究MBS对阻燃合金的增韧增容效果,并以SEM观察MBS对合金相界面和相形态的影响. 结果表明,RDP的凝聚相阻燃和TPP的气相阻燃作用具有协同效果,可以在PC/ABS合金中促进磷酸盐结构生成,进而有助于体系生成更连续、致密的炭层.


关键词: PC/ABS,  气相,  凝聚相,  阻燃,  相容性 
组成 wB /%
PC ABS RDP TPP PTFE1) MBS
1)注:PTFE作为抗滴落剂存在,每组配方都是相同份数
PC/ABS 70.0 30.0 ? ? ? ?
PC/ABS/10TPP 62.7 26.9 ? 10 0.4 ?
PC/ABS/10RDP 62.7 26.9 10 ? 0.4 ?
PC/ABS/(8RDP+2TPP) 62.7 26.9 8 2 0.4 ?
PC/ABS/(6RDP+4TPP) 62.7 26.9 6 4 0.4 ?
PC/ABS/(5RDP+5TPP) 62.7 26.9 5 5 0.4 ?
PC/ABS/(4RDP+6TPP) 62.7 26.9 4 6 0.4 ?
PC/ABS/(2RDP+8TPP) 62.7 26.9 2 8 0.4 ?
PC/ABS/(6RDP+4TPP)/5MBS 59.2 25.4 6 4 0.4 5
PC/ABS/(6RDP+4TPP)/10MBS 55.7 23.9 6 4 0.4 10
PC/ABS/(6RDP+4TPP)/15MBS 52.2 22.4 6 4 0.4 15
Tab.1 Formulations of flame retardant PC/ABS alloy
组成 $\overline {{t_1}} $/s $\overline {{t_2}} $/s $\overline {{t_1}} $+ $\overline {{t_2}} $/s UL 94等级
PC/ABS >30.0 >60.0 >60.0 无等级
PC/ABS/10TPP 16.4 26.2 42.6 V-1
PC/ABS/10RDP 12.1 20.3 32.4 V-1
PC/ABS/(8RDP+2TPP) 14.3 17.2 31.5 V-1
PC/ABS/(6RDP+4TPP) 3.3 6.7 10.0 V-0
PC/ABS/(5RDP+5TPP) 2.1 4.2 6.3 V-0
PC/ABS/(4RDP+6TPP) 4.1 5.1 9.2 V-0
PC/ABS/(2RDP+8TPP) 12.1 15.2 27.3 V-1
PC/ABS/(6RDP+4TPP)/5MBS 8.9 9.3 18.2 V-0
PC/ABS/(6RDP+4TPP)/10MBS 26.4 28.9 55.3 V-1
PC/ABS/(6RDP+4TPP)/15MBS >30.0 >60.0 >60.0 无等级
Tab.2 UL 94 results for flame retardant PC/ABS alloy
组成 tign /s tPHRR /s PHRR /
(kW·m?2
THR /
(MJ·m?2
AEHC /
(MJ·kg?1
ASEA /
(m2·kg?1
CHR /% FGI /
(kW·m?2·s?1
FPI /
(m2·s·kW?1
PC/ABS/10RDP 41.5±0.5 155.0±5.0 444.8±22.3 68.2±0.4 19.9±0.1 1048.1±35.8 6.86±0.03 2.87 0.093
PC/ABS/(6RDP+4TPP) 40.5±1.5 157.5±2.5 422.1±20.4 65.8±1.1 19.4±0.3 1123.4±15.9 6.70±0.08 2.68 0.096
PC/ABS/10TPP 40.1±3.0 150.0±1.0 445.5±3.4 67.6±0.1 19.5±0.2 1102.3±6.7 4.68±1.06 2.97 0.090
Tab.3 Cone data for flame retardant PC/ABS alloy under heat radiation intensity of 50 kW/m2
Fig.1 Digital photographs of char residues after Cone tests
Fig.2 SEM images of char residues after Cone tests
组成 xB /%
C O P Si
PC/ABS/10RDP 79.44 18.02 2.54 0.00
PC/ABS/(6RDP+4TPP) 75.95 21.06 2.95 0.04
PC/ABS/10TPP 88.92 10.12 0.96 0.00
Tab.4 EDS analysis of char residues after Cone tests
组成 a /(kJ·m?2 σb /MPa εb /% Et /MPa
PC/ABS 41.7±5.3 51.1±2.4 27.8±8.1 853.1±104.4
PC/ABS/10RDP 8.6±2.4 51.4±2.8 19.2±5.1 838.7±146.2
PC/ABS/10TPP 10.4±1.8 46.6±2.9 21.2±11.9 736.1±123.5
PC/ABS/(6RDP+4TPP) 7.1±0.8 49.7±3.4 17.1±4.2 863.6±175.9
PC/ABS/(5RDP+5TPP) 6.9±0.9 48.8±1.7 15.5±3.4 689.7±123.2
PC/ABS/(4RDP+6TPP) 5.1±0.7 49.5±1.2 19.1±3.2 970.2±111.3
PC/ABS/(6RDP+4TPP)/5MBS 10.7±1.5 43.1±3.5 10.8±0.7 649.6±197.5
PC/ABS/(6RDP+4TPP)/10MBS 27.6±2.8 38.3±3.3 14.8±4.4 722.2±116.5
PC/ABS/(6RDP+4TPP)/15MBS 33.5±1.2 33.9±2.4 25.8±7.3 465.6±74.6
Tab.5 Izod impact strength,tensil strength,elongation at break and tensile modulus tests for flame retardant PC/ABS alloy
Fig.3 SEM images of impact section
[1]   LUO H, ZHOU F, YANG Y Y, et al Gas-condensed phase flame-retardant mechanisms of tris (3-nitrophenyl) phosphine/triphenyl phosphate/ABS[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132 (1): 263- 273
doi: 10.1007/s10973-017-6906-z
[2]   LEVCHIK S V, BRIGHT D A, MOY P, et al New developments in fire retardant non-halogen aromatic phosphates[J]. Journal of Vinyl and Additive Technology, 2000, 6 (3): 123- 128
doi: 10.1002/vnl.10238
[3]   BRIGHT D A, DASHEVSKY S, MOY P Y, et al Resorcinol bis (diphenyl phosphate), a non-halogen flame-retardant additive[J]. Journal of Vinyl and Additive Technology, 1997, 3 (2): 170- 174
doi: 10.1002/vnl.10184
[4]   LEVCHIK S V, BRIGHT D A, ALESSIO G R, et al New halogen-free fire retardant for engineering plastic applications[J]. Journal of Vinyl and Additive Technology, 2001, 7 (2): 98- 103
doi: 10.1002/vnl.10274
[5]   MO H B, XU L P, ZHOU T, et al Novel synergistic flame-retardant system of Mg-Al-Co-LDHs/DPCPB for ABS resins[J]. Journal of Applied Polymer Science, 2018, 135 (22): 6213- 6221
[6]   WANG W H, ZHAO G Q, WU X H, et al Investigation on phosphorus halogen-free flame-retardancy systems in short glass fiber-reinforced PC/ABS composites under rapid thermal cycle molding process condition[J]. Polymer Composites, 2015, 36 (9): 1653- 1663
doi: 10.1002/pc.23075
[7]   YANG Y Y, KONG W B, LUO H, et al Enhancement of char-forming and water resistance on ABS modified by poly(4-nitrophenoxy)-phosphazene[J]. Journal of Applied Polymer Science, 2018, 135 (11): 987- 995
[8]   ZHAO D, WANG J, WANG X L, et al Highly thermostable and durably flame-retardant unsaturated polyester modified by a novel polymeric flame retardant containing schiff base and spirocyclic structures[J]. Chemical Engineering Journal, 2018, 344 (7): 419- 430
[9]   PAWLOWSKI K H, SCHARTEL B Flame retardancy mechanisms of aryl phosphates in combination with boehmite in bisphenol a polycarbonate/acrylonitrile-butadiene-styrene blends[J]. Polymer Degradation and Stability, 2008, 93 (3): 657- 667
doi: 10.1016/j.polymdegradstab.2008.01.002
[10]   REN Y Y, CHEN L, ZHANG Z Y, et al Synergistic effect of hydroquinone bis (di-2-methylphenyl phosphate) and novolac phenol in ABS composites[J]. Polymer Degradation and Stability, 2014, 109 (11): 285- 292
[11]   LI H C, LIU J P, ZHAO W, et al Synthesis of a novel self-intumescent flame retardant with spiro and triazine structure and its performance for polypropylene[J]. Journal of Fire Sciences, 2016, 34 (2): 104- 110
doi: 10.1177/0734904115621929
[12]   LU S Y, HAMERTON I Recent developments in the chemistry of halogen-free flame retardant polymers[J]. Progress in Polymer Science, 2002, 27 (8): 1661- 1712
doi: 10.1016/S0079-6700(02)00018-7
[13]   US-ASTM. Standard test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics (oxygen index): ASTM D 2863-2010 [S]. New York: [s.n.], 2010: 6-14.
[14]   中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会. 塑料悬臂梁冲击强度的测定: GB/T 1843—2008 [S]. 北京: 中国标准出版社, 2008: 2-7.
[15]   中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会. 塑料拉伸性能的测定: GB/T 1040—2006 [S]. 北京: 中国标准出版社, 2006: 2-10.
[16]   IX-ISO. Reaction to fire tests - heat release, smoke production and mass loss rate- part 1: heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement): ISO 5660-1-2015 [S]. Switzerland: ISO Copyright Office, 2015: 5-12.
[17]   欧育湘, 赵毅, 韩廷解 PC热分解机理及PC、PC/ABS的阻燃机理[J]. 合成树脂及塑料, 2008, 25 (4): 74- 79
OU Yu-xiang, ZHAO Yi, CHAO Ting-jie Thermal decomposition mechanism of PC and flame retardant mechanism of PC and PC / ABS[J]. China Synthetic Resin and Plastics, 2008, 25 (4): 74- 79
[18]   LEVCHIK S V, WEIL E D Thermal decomposition, combustion and flame-retardancy of epoxy resins-a review of the recent literature[J]. Polymer International, 2004, 53 (12): 1901- 1929
doi: 10.1002/pi.1473
[19]   KRISTIN H P, BERNHARD S Flame retardancy mechanisms of triphenylphosphate, resorcinol bis (diphenyl phosphate) and bisphenol a bis (diphenyl phosphate) in polycarbonate/acryloni-trile-butadiene-styrene blends[J]. Polymer International, 2007, 56 (11): 1404- 1414
doi: 10.1002/pi.2290
[20]   GAGGAR S K, CHEN F F. Flame retardant polycarbonate blends comprising graft copolymers: EP 0771851 [P]. 2003–05–07.
[21]   李斌, 王建祺 聚合物材料燃烧性和阻燃性的评价-锥形量热仪法[J]. 高分子材料科学与工程, 1998, 14 (5): 15- 19
LI Bin, WANG Jian-qi Evaluation of flammability and flame retardancy of polymer materials-CONE[J]. Polymer Materials Science and Engineering, 1998, 14 (5): 15- 19
[22]   黄志义, 武斌, 康诚, 等 复合氢氧化物改性沥青阻燃和路用性能[J]. 浙江大学学报: 工学版, 2016, 50 (1): 27- 32
HUANG Zhi-yi, WU Bin, KANG Cheng, et al Flame retardant and pavement performance of composite hydroxide modified asphalt[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (1): 27- 32
[23]   LI J, WEI P, LI L K, et al Synergistic effect of mesoporous silica SBA-15 on intumescent flame-retardant polypropylene[J]. Fire and Materials, 2011, 35 (2): 83- 91
doi: 10.1002/fam.1040
[24]   WANG D L, LIU Y, WANG D Y, et al A novel intumes-cent flame-retardant system containing metal chelatesfor polyvinyl alcohol[J]. Polymer Degradation and Stability, 2007, 92 (8): 1555- 1564
doi: 10.1016/j.polymdegradstab.2007.05.001
[25]   LEVCHIK S V, WEIL E D Overview of recent development in the flame retardancy of polycarbonates[J]. Polymer International, 2005, 54 (7): 981- 998
doi: 10.1002/pi.1806
[1] Feng YU,Xian XU,Yao-zhi LUO. Rotary retractable plate structures with parallelogram closed-loop chains[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1040-1046.
[2] WANG Mian, QU Dong chang, CHEN Guo zhu. EMC performance improvement of auxiliary power supplies in three phase PWM converters[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 657-662.
[3] HUANG Zhi yi, WU Bin, KANG Cheng, ZHU Kai, WU Ke. Flame retardant and pavement performance of composite hydroxide modified asphalt[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 27-32.
[4] KONG Xiao-wu, FANG Jin-hui, PU Zeng-kun. Compatibility design of active proportional cartridge valve with system conditions[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(1): 15-20.
[5] MENG Pei-pei, ZHANG Jun-ming, CHEN Heng-lin, QIAN Zhao-ming. Modeling and predicting for common mode noise
disturbance in Flyback converter
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1702-1707.
[6] MENG Pei-pei, ZHANG Jun-ming, QIAN Zhao-ming. Modeling and predicting for common mode noise in Boost converter[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1851-1856.
[7] WAN Min-yong, PAN Yun, ZHANG Yu-hong, YAN Xiao-lang. Compression method based on test vector compatibility[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(11): 2148-2153.
[8] CHEN Jin, LOU Dun-Hui, DENG Hua. Movability and kinematic bifurcation analysis for pin-bar mechanisms[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(6): 1083-1089.