Please wait a minute...
J4  2012, Vol. 46 Issue (5): 935-940    DOI: 10.3785/j.issn.1008-973X.2012.05.026
    
Modeling and influences of imperfect interfaces
in multiferroic composites
QIAN Zhi-hong, TAO Wei-ming, YANG Xing-wang
Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to study the influences of interfaces on magnetoelectric (ME) coupling, a finite element model for multiferroics composites was suggested by employing cohesive zone elements for the interfaces. Piezoelectric elements were utilized for both piezoelectric and piezomagnetic phases based on the analogy between piezoelectric and piezomagnetic constitutive relations. And cohesive zone models (CZM) were employed to represent the relation between tractions and displacement discontinuities on imperfect interfaces, which characterized the stiffness and toughness of interfaces and were implemented by cohesive zone elements. Imperfect interfaces can be modeled by adopting CZM parameters, and perfect interfaces are also possible to be approximately modeled by CZM with enhanced interfacial stiffness. Example results of laminated multiferroics composites with ideal interfaces show good agreement with those in literature. The influences of imperfect interfaces on ME coupling were analyzed by the present finite element model, the corresponding ME coefficients were calculated. The simulation results indicate that the interface stiffness plays a significant role on ME coefficient of the composites. When the interfaces are stiff enough, they tend to be perfect and the ME coefficient tends to a constant. The present method and results are of reference significance to process of interfacial bonding and prediction of ME properties.



Published: 01 May 2012
CLC:  O 34  
  O 341  
Cite this article:

QIAN Zhi-hong, TAO Wei-ming, YANG Xing-wang. Modeling and influences of imperfect interfaces
in multiferroic composites. J4, 2012, 46(5): 935-940.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.05.026     OR     http://www.zjujournals.com/eng/Y2012/V46/I5/935


多铁性复合材料非理想界面的模拟及其影响

为研究多铁性复合材料中界面特性对磁电耦合的影响,建立一种采用界面内聚力单元的多铁性复合材料有限元分析模型.基于压电和压磁材料本构关系的模拟特性,采用压电有限单元模拟各单相材料;将内聚力模型用于表征界面上相间相互作用力和位移间断之间的关系,可描述非理想界面的刚度和强度,并通过相应的内聚力单元来实现.各种非理想界面状况可通过调节内聚力模型参数来表征,而理想界面可通过对界面刚度加强来模拟.具有理想界面的层状多铁性复合材料的算例分析结果与文献一致.采用本文的有限元模型分析了非理想界面的刚度对磁电耦合的影响,计算了相应的磁电耦合系数.结果表明,界面刚度对复合材料的磁电系数有重要影响,当界面刚度足够大时,界面特性接近于理想界面,磁电系数趋于恒定.本文方法和结果对理论和实际中界面处理、磁电耦合性能的预测具有参考意义.

[1] EERENSTEIN W, MATHUR N D, SCOTT J F. Multiferroic and magnetoelectric materials[J]. Nature, 2006, 442(7104): 759-765.
[2] YUAN Guoliang, OR S W. Multiferroicity in polarized singlephaseBi0.875Sm0.125FeO3ceramics[J]. Journal of Applied Physics , 2006 , 100(2): 024109.
[3] YUAN Guoliang, OR SW, LIU Junming, et al. Structural transformation and ferroelectromagnetic behavior in singlephaseBi1xNdxFeO3multiferroic ceramics [J]. Applied Physics Letters, 2006, 89(5): 052905.
[4] WANG Yiping, YUAN Guoliang, CHEN Xiaoyuan, et al. Electrical and magnetic properties of singlephased and highly resistive ferroelectromagnet BiFeO3ceramic[J]. Journal of Physics D: Applied Physics, 2006, 39(10): 2019-2023.
[5] SPALDIN N A, FIEBIG M. The renaissance of magnetoelectric multiferroics [J]. Science, 2005, 309(5733): 391-392.
[6] NAN Cewen. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases [J]. Physical Review B, 1994(50): 6082-6088.
[7] PAN E, WANG R. Effects of geometric size and mechanical boundary conditions on magnetoelectric coupling in multiferroic composites [J]. Journal of Physics D:Applied Physics, 2009, 42(24):245503.
[8] NAN Cewen, BICHURIN M I, DONG Shuxiang, et al. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions [J]. Journal of Applied Physics, 2008, 103: 031101.
[9] NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding [J]. Journal of Applied Mechanics Transactions of The Asme, 1987, 54(3): 525-531.
[10] NEEDLEMAN A. An analysis of tensile decohesion along an interface [J]. Journal of The Mechanics and Physics of Solids, 1990, 38(3): 289-324.
[11] CAMACHO G T, ORTIZ M. Computational modeling of impact damage in brittle materials [J]. International Journal of Solids and Structures,1996,33(20/22): 2899-2938.
[12] GEUBELLE P H, BAYLOR J . Impactinduced delamination of laminated composites: A 2D simulation [J]. Composites Part BEngineering, 1998, 29: 589-602.
[13] 闫亚宾, 尚福林. PZT薄膜界面分层破坏的内聚力模拟[J]. 中国科学, 2009, 39(7): 1007-1017.
YAN Yabin, SHANG Fulin. Choesive zone modeling of interfacial delamination in PZT thin films [J]. Science in China, 2009, 39(7): 1007-1017.
[14] 曲凯, 张旭东, 李高春. 基于内聚力界面脱黏的复合固体推进剂力学性能研究[J], 火炸药学报, 2008, 31(6): 77-81.
QU Kai, ZHANG Xudong, LI Gaochun. Research on mechanical performance of composite propellant with cohesive interface debonding [J]. Chinese Journal of Explosives and Propellants, 2008, 31(6): 77-81.
[15] 周储伟,杨卫,方岱宁. 内聚力界面单元与复合材料的界面损伤分析[J]. 力学学报,1999,31(3): 372-377.
ZHOU Chuwei, YANG Wei, FANG Daining. Cohesive interface element and interfacial damage analysis of composites [J]. Acta Mechanica Sinica, 1999, 31(3): 372-377.
[16] BLACKBURN J F, VOPSAROIU M, CAIN M G. Verified finite element simulation of multiferroic structures: Solutions for conducting and insulating systems [J]. Journal of Applied Physics, 2008, 104: 074104.

[1] LI Zheng-wei, TAO Wei-ming. Multi-layer encapsulation and stretchability analysis for
noncoplanar film-substrate structure
[J]. J4, 2012, 46(6): 1143-1147.
[2] LI Ying , YIN Zhong-ke, CAO Xiao, DENG Shui-guang. Preprocessing scheme for improving Schnorr signature in JavaCard[J]. J4, 2012, 46(3): 386-391.
[3] WANG Hui-ming, ZHAO Zhi-cheng. Effect of interfacial defect on Love waves in composite structures
with piezoelectric thin film
[J]. J4, 2012, 46(3): 555-559.
[4] LING Dao-sheng, BU Ling-fang, HUANG Gen-qing, HUANG Bo. h-adaptive enhanced finite element method for plane problems[J]. J4, 2011, 45(12): 2150-2158.
[5] CHEN Xiao-an, SHAO Bing-mei, SONG Shun-cheng, WANG Ting-hui. Measurements of shearing property of high N alloy steel
 at super high strain rates
[J]. J4, 2011, 45(11): 1948-1952.
[6] LIU Cheng-bin, BIAN Zu-guang, CHEN Wei-qiu. Three-dimensional pyroelectric analysis of
multilayered piezoelectric spherical shell
[J]. J4, 2011, 45(6): 1067-1073.
[7] GAO Hong-wei, HE Li-sha, ZHANG Yong-qiang. Unified plastic limit solution for thick-walled cylinder with size effect[J]. J4, 2011, 45(4): 684-687.
[8] SHI Yan-bin, HE Wen, ZHENG Jian-yi. Research on plasticity modification of strain relief
coefficients in Q235 steel
[J]. J4, 2010, 44(11): 2083-2087.
[9] JIANG Jun, XU Zheng-Gong, XU Ling-Feng. Buckling deformation of force chain of granular material[J]. J4, 2010, 44(10): 1931-1937.
[10] CHEN Wei-Liang, XU Bo-Hou, HUANG Lei. Vibration analysis of stator winding end baskets of  large turbo-generator[J]. J4, 2010, 44(8): 1558-1561.
[11] YANG Xin-Wang, BI Guo-Li, ZHANG Xue, et al. Path iterative method for laser-controlled crack propagation and its convergence[J]. J4, 2009, 43(11): 2043-2047.