Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Performance analysis and power optimization of piezoelectric #br# vibration energy harvester
ZHAN Yong-zheng, WANG Guang-qing
School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
Download:   PDF(1036KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 Bimorph piezoelectric layers in series connection were analyzed in order to predict the output performances and optimize the output power of the piezoelectric vibration energy harvester (PVEH). A finite element electromechanical coupled dynamic model and a solid lattice model (SLM) of the bimorph cantilevered PVEH were derived with ANSYS software and the finite element method, considering the coupling factor between the mechanical structure and the circuit. The effects of the different load resistances on the vibration performance and the electrical output performance of PVEH under the excitation of the external force were analyzed. Then the curves of its vibration performance and electrical output performance with different load resistances were obtained. The impedance of energy harvester was matched with it by adjusting the load resistance, which realized the output power optimization of energy harvester. The optimal load resistance and the output power were received. Results showed that the PVEH had a large output voltage under open-circuit condition and a large current under short-circuit condition. The maximal output power under open-circuit and short-circuit conditions reached 57.81 and 55.12 W, respectively.



Published: 04 August 2014
CLC:  TN 712  
  TN 751  
Cite this article:

ZHAN Yong-zheng, WANG Guang-qing. Performance analysis and power optimization of piezoelectric #br# vibration energy harvester. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1248-1253.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.07.015     OR     http://www.zjujournals.com/eng/Y2014/V48/I7/1248


压电振动能量采集器的性能分析与功率优化

为了预测压电振动能量采集器的输出特性,优化输出功率,以压电双晶片串联型振动能量采集器为研究对象,综合考虑结构与电路耦合因素,利用有限元法和ANSYS软件建立压电振动能量采集器的有限元机电耦合动力学模型和网格实体模型.分析在外力激振条件下负载电阻对压电振动能量采集器的振动特性和电输出特性的影响,得到不同负载电阻下压电能量采集器的振动特性和电输出特性曲线.通过调节负载电阻使之与能量采集器的阻抗匹配,实现了对能量采集器输出功率的优化,得到了优化的负载电阻和输出功率.研究结果表明,采用压电能量采集器能够输出大的开路电压、大的短路电流,优化后的开路和短路谐振时的最大输出功率分别达到57.81和55.12 W.

[1] KIM M, HOEGEN M, DUGUNDJI J, et al. Modeling and experimental verification of proof mass effects on vibration energy harvester performance [J]. Smart Materials and Structures, 2010, 19(4): 045023.
[2] ANTON S R, SODANO H A. A review of power harvesting using piezoelectric materials (2003-2006) [J]. Smart Materials and Structures, 2007, 16(3): R1R21.
[3] PRIYA S.Advances in energy harvesting using low profile piezoelectric transducers [J]. Journal of Electroceramics, 2007, 19(1): 167-184.
[4] COOK-CHENNAULT K A, THAMBI N, SASTRY A M.Powering MEMS portable devices: a review of non-regenerative and regenerative power supply systems with emphasis on piezoelectric energy harvesting systems [J].Smart Materials and Structures, 2008, 17(4): 043001.
[5] ROUNDY S, WRIGHT P K, RABAEY J. A study of low level vibration as a power source for wireless sensor nodes [J]. Computer Communications, 2003, 26(11): 1131-1144.
[6] DUTOIT N E, WARDLE B L, KIM S G. Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters [J]. Integrated Ferroelectrics, 2005, 71(1): 121-160.
[7] SODANO H A, PARK G, INMAN D J. Estimation of electric charge output for piezoelectric energy harvesting [J]. Strain, 2004, 40(2): 49-58.
[8]HAGOOD N W, CHUNG W, VON FLOTOW A. Modeling of piezoelectric actuator dynamics for active structural control [J]. Journal of Intelligent Material Systems and Structures, 1990, 1(3): 327-354.
[9] 贺学锋,杜志刚,赵兴强,等. 悬臂梁式压电振动能量采集器的建模及实验验证[J]. 光学精密工程, 2011, 19(8): 1171-1178.
HE Xue-feng, DU Zhi-gang, ZHAO Xing-qiang, et al. Modeling and experimental verification for cantilevered piezoelectric vibration energy harvester [J]. Optics and Precision Engineering, 2011, 19(8): 1171-1178.
[10] CORNWELL P J, GOETHAL J, KOWKO J, et al. Enhancing power harvesting using a tuned auxiliary structure [J]. Journal of Intelligent Material Systems and Structures, 2005, 16(10): 825-834.
[11] MA P S, KIM J E, KIM Y Y.Power-amplifying strategy in vibration-powered energy harvesters [C]∥Active and Passive Smart Structures and Integrated Systems. California: SPIE, 2010, 7643:76430O176430O8.
[12] ERTURK A, INMAN D J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitation [J]. Smart Materials and Structures, 2009, 18(2): 025009.

[1] XIE Chuan, ZHANG Jing, WANG Zhi-qiang, CHEN Guo-zhu. Digital PLL with fixed number of sampling points for repetitive
control algorithm
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(5): 789-793.