Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (2): 365-373    DOI: 10.3785/j.issn.1008-973X.2020.02.018
Mechanical and Energy Engineering     
Parameter identification of cohesive zone model for Al-Li alloy/FM94 bonded joints
Bi-sheng WANG1(),Yi-bo LI1,2,*(),Shun YUAN1,Jian LI1
1. College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
2. State Key Laboratory of High Performance and Complex Manufacturing, Central South University, Changsha 410083, China
Download: HTML     PDF(1518KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The cohesive zone model of the bonded joint was established by ABAQUS software, in order to correctly predict the strength and failure characteristics of Al-Li alloy/FM94 bonded joints. The calculation formulas of the fracture energy under the failure modes of type I and II were deduced based on material mechanics and fracture mechanics, aiming at the identification of the key parameters of the cohesive zone model. The force-displacement curves of FM94 bonded Al-Li alloy standard double cantilever beam (type I failure) and three-point bending specimen (type II failure) were measured experimentally, and the cohesive zone model parameters under different failure modes were calculated and determined. The numerical simulations of the strength and fracture failure process of the double cantilever beam standard specimen, the three-point bending standard specimen and the single lap joint were carried out by using triangular cohesive theory model and the determined model parameters. Results show that the simulation results are in good agreement with the experimental data, and the maximum errors of fracture load and fracture displacement at different loading rates are 4.4% and 3.8%, respectively. It is verified that the cohesive zone model parameters are reasonable and the model parameters are correct.



Key wordsAl-Li alloy      FM94 adhesion      cohesive zone model      fracture energy      single lap joint     
Received: 24 December 2018      Published: 10 March 2020
CLC:  TG 495  
Corresponding Authors: Yi-bo LI     E-mail: 1099525378@qq.com;yibo.li@csu.edu.cn
Cite this article:

Bi-sheng WANG,Yi-bo LI,Shun YUAN,Jian LI. Parameter identification of cohesive zone model for Al-Li alloy/FM94 bonded joints. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 365-373.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.02.018     OR     http://www.zjujournals.com/eng/Y2020/V54/I2/365


铝锂合金/FM94胶接接头内聚力模型参数识别

为了正确预测铝锂合金/FM94胶接接头的强度与失效特征,采用ABAQUS软件建立胶接接头的内聚力仿真模型. 针对内聚力模型关键参数的确定问题,利用材料力学和断裂力学相关理论推导I、II型断裂失效形式下断裂能的计算公式;通过实验测定FM94胶接铝锂合金标准双悬臂梁(I型失效)和三点弯曲试样(II型失效)的力-位移曲线,计算并确定不同失效模式下的内聚力模型参数;采用三角形内聚力理论模型和所确定的模型参数进行双悬臂梁标准试样、三点弯曲标准试样及单搭接接头的强度与断裂失效过程的数值仿真. 结果表明:仿真结果与实验数据较一致,在不同加载速率下断裂载荷最大误差为4.4%,断裂位移最大误差为3.8%,验证内聚力模型参数确定方法合理,模型参数正确.


关键词: 铝锂合金,  FM94胶,  内聚力模型,  断裂能,  单搭接接头 
Fig.1 Traction separation law of bilinear cohesive zone model
Fig.2 Typical failure types of adhesive joints
Fig.3 Calculation diagram of beam crack tip angle under bending moment
材料 E11 /GPa E22 /GPa G12 /GPa υ12 σc /MPa
FM94 2.42 2.42 0.621 0.38 38.1
Al-Li-S4 75.50 75.50 ? 0.33 475.0
Tab.1 Material parameters of Al-Li alloy and FM94 adhesion
Fig.4 Geometric model of double cantilever beam
Fig.5 Double cantilever beam tensile test
Fig.6 Tensile experimental results of double cantilever beam under different crack opening lengths
a0 /mm F/N GIC/(N?mm?1
40 172.56 1.56
60 128.16 1.94
80 104.58 2.29
100 83.60 2.29
120 69.87 2.30
Tab.2 Calculation results of type I fracture energy
Fig.7 Geometric model of three-point bending specimen
Fig.8 Three-point bending test
Fig.9 Three-point bending test results under different crack opening lengths
a0 /mm P/N GIIc /(N?mm?1
25 1431.86 1.93
35 1021.50 1.92
45 785.54 1.92
Tab.3 Calculation results of type II fracture energy
a0 /mm Ft/N Fs /N e/%
40 172.56 176.49 2.28
60 128.16 132.12 3.09
80 104.58 108.11 3.38
100 83.60 86.81 3.84
120 69.87 71.27 2.00
Tab.4 Comparison of simulation and experimental results of double cantilever beam with different crack opening lengths
a0 /mm P/N Fs /N e/%
25 1431.86 1455.89 1.68
35 1021.50 1041.21 1.93
45 785.54 799.22 1.74
Tab.5 Comparison of simulation and experimental results of three point bending specimens under different crack opening lengths
Fig.10 Double cantilever beam simulation model and analysis result
Fig.11 Simulation model of three point bending specimen and analysis results
Fig.12 Geometric model of single lap joint specimen
Fig.13 Finite element model for strength analysis of single lap joints
Fig.14 Damage factor of failure process of adhesive layer elements
Fig.15 Distribution of adhesive layer after failure of single lap joint
Fig.16 Stress distribution of undamaged adhesive layer
编号 F/N Uo/mm
实验1 10 934.76 2.16
实验2 10 972.64 2.14
实验3 10 923.02 2.18
实验4 10 798.50 2.17
实验5 10 650.21 2.13
Tab.6 Comparison of single lap joint experiment and simulation
Fig.17 Displacement-load curves of single lap joint
v/(mm·min?1 F/N Uo/mm
1 10 687.39 2.01
3 10 787.39 2.06
5 10 855.83 2.16
7 10 759.65 2.11
仿真结果 11 174.21 2.08
Tab.7 Comparison of single lap joint experiment and simulation under different loading rates
Fig.18 Failure of bonded layer under different loading rates
[1]   赵丽滨, 徐吉峰. 先进复合材料连接结构分析方法[M]. 北京: 北京航空航天大学出版社, 2015.
[2]   胡振虎. 基于内聚力理论的复合材料分层失效机理研究[D]. 杭州: 浙江大学, 2016.
HU Zhen-hu. Research on interface failure mechanisms of composite adhesive joints based on cohesive model [D]. Hangzhou: Zhejiang University, 2016.
[3]   DUGDALE D S Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8 (2): 100- 104
doi: 10.1016/0022-5096(60)90013-2
[4]   BARENBLATT G I The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55- 129
doi: 10.1016/S0065-2156(08)70121-2
[5]   林德佳, 臧孟炎 基于内聚力模型的夹层玻璃冲击破坏仿真分析[J]. 机械工程学报, 2017, 53 (22): 176- 181
LIN De-jia, ZANG Meng-yan Research on impact fracture behavior of the laminated glass based on cohesive zone model[J]. Journal of Mechanical Engineering, 2017, 53 (22): 176- 181
doi: 10.3901/JME.2017.22.176
[6]   GEUBELLE P H, BAYLOR J Impact-induced delamination of laminated composites: a 2D simulation[J]. Composites Part B: Engineering, 1998, 29: 589- 602
doi: 10.1016/S1359-8368(98)00013-4
[7]   NEEDLEMAN A An analysis of tensile decohesion along an interface[J]. Journal of the Mechanics and Physics of Solids, 1990, 38 (3): 289- 324
doi: 10.1016/0022-5096(90)90001-K
[8]   TVERGAARD V, HUTCHINSON J W The relation between crack growth resistance and fracture process parameters in elastic-plastic solids[J]. Journal of the Mechanics and Physics of Solids, 1992, 40 (6): 1377- 1397
doi: 10.1016/0022-5096(92)90020-3
[9]   LIU P F, GU Z P, PENG J Y, et al Finite element analysis of the influence of cohesive law parameters on the multiple delamination behaviors of composites under compression[J]. Composite Structures, 2015, 131: 975- 986
doi: 10.1016/j.compstruct.2015.06.058
[10]   CAMPILHO R, BANEA M D, NETO, J A B P, et al Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer[J]. International Journal of Adhesion and Adhesives, 2013, 44 (7): 48- 56
[11]   王永刚, 胡剑东, 王礼立 金属材料层裂破坏的内聚力模型[J]. 固体力学学报, 2012, 33 (5): 465- 470
WANG Yong-gang, HU Jian-dong, WANG Li-li Cohesive zone modeling of spallation in ductile metals[J]. Chinese Journal of Solid Mechanics, 2012, 33 (5): 465- 470
doi: 10.3969/j.issn.0254-7805.2012.05.003
[12]   王跃, 赵霞, 穆志韬, 等 胶层Ⅰ/Ⅱ型断裂破坏内聚单元参数的确定和应用[J]. 玻璃钢/复合材料, 2016, (12): 60- 64
WANG Yue, ZHAO Xia, MU Zhi-tao, et al Fracture parameters determination and application of adhesive based on cohesive zone model under the condition of mixed mode I/II[J]. Fiber Reinforced Plastics/Composites, 2016, (12): 60- 64
doi: 10.3969/j.issn.1003-0999.2016.12.011
[13]   VALOROSO N, SESSA S, LEPORE M, et al Identification of mode-I cohesive parameters for bonded interfaces based on DCB test[J]. Engineering Fracture Mechanics, 2013, 104 (24): 56- 79
[14]   GABRIELE C Cohesive law identification of adhesive layers subject to shear load: an exact inverse solution[J]. International Journal of Solids and Structures, 2018, S0020768318303573
[15]   KATNAM K B, SARGENT J P, CROCOMBE A D, et al Characterisation of moisture-dependent cohesive zone properties for adhesively bonded joints[J]. Engineering Fracture Mechanics, 2010, 77 (16): 3105- 3119
doi: 10.1016/j.engfracmech.2010.08.023
[16]   CKIM Y R Cohesive zone model to predict fracture in bituminous materials and asphaltic pavements: state-of-the-art review[J]. International Journal of Pavement Engineering, 2011, 12 (4): 343- 356
doi: 10.1080/10298436.2011.575138
[17]   BENZEGGAGH M L, KENANE M Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56 (4): 439- 449
doi: 10.1016/0266-3538(96)00005-X
[18]   WILLIAMS J G On the calculation of energy release rates for cracked laminates[J]. International Journal of Fracture, 1988, 36 (2): 101- 119
doi: 10.1007/BF00017790
[19]   MOHARNMADI S, OWEN D R J, PERIC D A combined finite/discrete element algorithm for delamination analysis of composites[J]. Finite Elements in Analysis and Design, 1998, 28 (4): 321- 336
doi: 10.1016/S0168-874X(97)00043-7
[20]   BLACKMAN B R K, KINLOCH A J, PARASCHI M The determination of the mode II adhesive fracture resistance, GIIc, of structural adhesive joints: an effective crack length approach [J]. Engineering Fracture Mechanics, 2005, 72 (6): 877- 897
doi: 10.1016/j.engfracmech.2004.08.007
[21]   LI J, LI Y B, HUANG M H, et al Improvement of aluminum lithium alloy adhesion performance based on sandblasting techniques[J]. International Journal of Adhesion and Adhesives, 2018, 84: 307- 316
doi: 10.1016/j.ijadhadh.2018.04.007
[22]   刘昌发, 黄明辉, 孙振起 航空用Al-Li合金阳极氧化对黏接性能的影响[J]. 材料导报, 2012, 26 (12): 9
LIU Chang-fa, HUANG Ming-hui, SUN Zhen-qi Influence of anodizing of aerial Al-Li alloy on its adhesive properties[J]. Materials Review, 2012, 26 (12): 9
doi: 10.3969/j.issn.1005-023X.2012.12.003
[23]   孙振起, 黄明辉 航空用铝合金表面处理的研究现状与展望[J]. 材料导报, 2011, 25 (23): 146
SUN Zhen-qi, HUANG Ming-hui Review of surface treatment for aluminum alloy[J]. Materials Review, 2011, 25 (23): 146
[1] Jian ZHOU,Gang MA,Wei ZHOU,Yong-gang CHENG,Quan-shui HUANG,Xue-xing CAO. Statistical analysis of fragment shape of rock grain after crushing based on FDEM[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 348-357.
[2] QIAN Zhi-hong, TAO Wei-ming, YANG Xing-wang. Modeling and influences of imperfect interfaces
in multiferroic composites
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 935-940.