Mechanical and Energy Engineering |
|
|
|
|
Parameter identification of cohesive zone model for Al-Li alloy/FM94 bonded joints |
Bi-sheng WANG1( ),Yi-bo LI1,2,*( ),Shun YUAN1,Jian LI1 |
1. College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China 2. State Key Laboratory of High Performance and Complex Manufacturing, Central South University, Changsha 410083, China |
|
|
Abstract The cohesive zone model of the bonded joint was established by ABAQUS software, in order to correctly predict the strength and failure characteristics of Al-Li alloy/FM94 bonded joints. The calculation formulas of the fracture energy under the failure modes of type I and II were deduced based on material mechanics and fracture mechanics, aiming at the identification of the key parameters of the cohesive zone model. The force-displacement curves of FM94 bonded Al-Li alloy standard double cantilever beam (type I failure) and three-point bending specimen (type II failure) were measured experimentally, and the cohesive zone model parameters under different failure modes were calculated and determined. The numerical simulations of the strength and fracture failure process of the double cantilever beam standard specimen, the three-point bending standard specimen and the single lap joint were carried out by using triangular cohesive theory model and the determined model parameters. Results show that the simulation results are in good agreement with the experimental data, and the maximum errors of fracture load and fracture displacement at different loading rates are 4.4% and 3.8%, respectively. It is verified that the cohesive zone model parameters are reasonable and the model parameters are correct.
|
Received: 24 December 2018
Published: 10 March 2020
|
|
Corresponding Authors:
Yi-bo LI
E-mail: 1099525378@qq.com;yibo.li@csu.edu.cn
|
铝锂合金/FM94胶接接头内聚力模型参数识别
为了正确预测铝锂合金/FM94胶接接头的强度与失效特征,采用ABAQUS软件建立胶接接头的内聚力仿真模型. 针对内聚力模型关键参数的确定问题,利用材料力学和断裂力学相关理论推导I、II型断裂失效形式下断裂能的计算公式;通过实验测定FM94胶接铝锂合金标准双悬臂梁(I型失效)和三点弯曲试样(II型失效)的力-位移曲线,计算并确定不同失效模式下的内聚力模型参数;采用三角形内聚力理论模型和所确定的模型参数进行双悬臂梁标准试样、三点弯曲标准试样及单搭接接头的强度与断裂失效过程的数值仿真. 结果表明:仿真结果与实验数据较一致,在不同加载速率下断裂载荷最大误差为4.4%,断裂位移最大误差为3.8%,验证内聚力模型参数确定方法合理,模型参数正确.
关键词:
铝锂合金,
FM94胶,
内聚力模型,
断裂能,
单搭接接头
|
|
[1] |
赵丽滨, 徐吉峰. 先进复合材料连接结构分析方法[M]. 北京: 北京航空航天大学出版社, 2015.
|
|
|
[2] |
胡振虎. 基于内聚力理论的复合材料分层失效机理研究[D]. 杭州: 浙江大学, 2016. HU Zhen-hu. Research on interface failure mechanisms of composite adhesive joints based on cohesive model [D]. Hangzhou: Zhejiang University, 2016.
|
|
|
[3] |
DUGDALE D S Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8 (2): 100- 104
doi: 10.1016/0022-5096(60)90013-2
|
|
|
[4] |
BARENBLATT G I The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55- 129
doi: 10.1016/S0065-2156(08)70121-2
|
|
|
[5] |
林德佳, 臧孟炎 基于内聚力模型的夹层玻璃冲击破坏仿真分析[J]. 机械工程学报, 2017, 53 (22): 176- 181 LIN De-jia, ZANG Meng-yan Research on impact fracture behavior of the laminated glass based on cohesive zone model[J]. Journal of Mechanical Engineering, 2017, 53 (22): 176- 181
doi: 10.3901/JME.2017.22.176
|
|
|
[6] |
GEUBELLE P H, BAYLOR J Impact-induced delamination of laminated composites: a 2D simulation[J]. Composites Part B: Engineering, 1998, 29: 589- 602
doi: 10.1016/S1359-8368(98)00013-4
|
|
|
[7] |
NEEDLEMAN A An analysis of tensile decohesion along an interface[J]. Journal of the Mechanics and Physics of Solids, 1990, 38 (3): 289- 324
doi: 10.1016/0022-5096(90)90001-K
|
|
|
[8] |
TVERGAARD V, HUTCHINSON J W The relation between crack growth resistance and fracture process parameters in elastic-plastic solids[J]. Journal of the Mechanics and Physics of Solids, 1992, 40 (6): 1377- 1397
doi: 10.1016/0022-5096(92)90020-3
|
|
|
[9] |
LIU P F, GU Z P, PENG J Y, et al Finite element analysis of the influence of cohesive law parameters on the multiple delamination behaviors of composites under compression[J]. Composite Structures, 2015, 131: 975- 986
doi: 10.1016/j.compstruct.2015.06.058
|
|
|
[10] |
CAMPILHO R, BANEA M D, NETO, J A B P, et al Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer[J]. International Journal of Adhesion and Adhesives, 2013, 44 (7): 48- 56
|
|
|
[11] |
王永刚, 胡剑东, 王礼立 金属材料层裂破坏的内聚力模型[J]. 固体力学学报, 2012, 33 (5): 465- 470 WANG Yong-gang, HU Jian-dong, WANG Li-li Cohesive zone modeling of spallation in ductile metals[J]. Chinese Journal of Solid Mechanics, 2012, 33 (5): 465- 470
doi: 10.3969/j.issn.0254-7805.2012.05.003
|
|
|
[12] |
王跃, 赵霞, 穆志韬, 等 胶层Ⅰ/Ⅱ型断裂破坏内聚单元参数的确定和应用[J]. 玻璃钢/复合材料, 2016, (12): 60- 64 WANG Yue, ZHAO Xia, MU Zhi-tao, et al Fracture parameters determination and application of adhesive based on cohesive zone model under the condition of mixed mode I/II[J]. Fiber Reinforced Plastics/Composites, 2016, (12): 60- 64
doi: 10.3969/j.issn.1003-0999.2016.12.011
|
|
|
[13] |
VALOROSO N, SESSA S, LEPORE M, et al Identification of mode-I cohesive parameters for bonded interfaces based on DCB test[J]. Engineering Fracture Mechanics, 2013, 104 (24): 56- 79
|
|
|
[14] |
GABRIELE C Cohesive law identification of adhesive layers subject to shear load: an exact inverse solution[J]. International Journal of Solids and Structures, 2018, S0020768318303573
|
|
|
[15] |
KATNAM K B, SARGENT J P, CROCOMBE A D, et al Characterisation of moisture-dependent cohesive zone properties for adhesively bonded joints[J]. Engineering Fracture Mechanics, 2010, 77 (16): 3105- 3119
doi: 10.1016/j.engfracmech.2010.08.023
|
|
|
[16] |
CKIM Y R Cohesive zone model to predict fracture in bituminous materials and asphaltic pavements: state-of-the-art review[J]. International Journal of Pavement Engineering, 2011, 12 (4): 343- 356
doi: 10.1080/10298436.2011.575138
|
|
|
[17] |
BENZEGGAGH M L, KENANE M Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56 (4): 439- 449
doi: 10.1016/0266-3538(96)00005-X
|
|
|
[18] |
WILLIAMS J G On the calculation of energy release rates for cracked laminates[J]. International Journal of Fracture, 1988, 36 (2): 101- 119
doi: 10.1007/BF00017790
|
|
|
[19] |
MOHARNMADI S, OWEN D R J, PERIC D A combined finite/discrete element algorithm for delamination analysis of composites[J]. Finite Elements in Analysis and Design, 1998, 28 (4): 321- 336
doi: 10.1016/S0168-874X(97)00043-7
|
|
|
[20] |
BLACKMAN B R K, KINLOCH A J, PARASCHI M The determination of the mode II adhesive fracture resistance, GIIc, of structural adhesive joints: an effective crack length approach [J]. Engineering Fracture Mechanics, 2005, 72 (6): 877- 897
doi: 10.1016/j.engfracmech.2004.08.007
|
|
|
[21] |
LI J, LI Y B, HUANG M H, et al Improvement of aluminum lithium alloy adhesion performance based on sandblasting techniques[J]. International Journal of Adhesion and Adhesives, 2018, 84: 307- 316
doi: 10.1016/j.ijadhadh.2018.04.007
|
|
|
[22] |
刘昌发, 黄明辉, 孙振起 航空用Al-Li合金阳极氧化对黏接性能的影响[J]. 材料导报, 2012, 26 (12): 9 LIU Chang-fa, HUANG Ming-hui, SUN Zhen-qi Influence of anodizing of aerial Al-Li alloy on its adhesive properties[J]. Materials Review, 2012, 26 (12): 9
doi: 10.3969/j.issn.1005-023X.2012.12.003
|
|
|
[23] |
孙振起, 黄明辉 航空用铝合金表面处理的研究现状与展望[J]. 材料导报, 2011, 25 (23): 146 SUN Zhen-qi, HUANG Ming-hui Review of surface treatment for aluminum alloy[J]. Materials Review, 2011, 25 (23): 146
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|