Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (1): 46-54    DOI: 10.3785/j.issn.1008-973X.2021.01.006
    
Thermal stress analysis and crack control of assembled bridge pier
Zhong-nan LI(),Hai-bo ZHU,Yang ZHAO,Xue LUO,Rong-qiao XU*()
Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(5844KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A cross-sea bridge under construction was considered as an example. The thermal stress and its influencing factors of the prefabricated bridge pier during connection with the cast-in-place cap were analyzed through numerical simulation. Crack control measures were proposed and field tests were conducted combined with the offshore construction conditions. Results show that the main factor causing thermal stress is the thermal expansion of the core-filled concrete, and the secondary factor is the temperature gradient of the pier. The maximum tensile stress increases by 15.4% when the concrete pouring temperature is increased from 10 °C to 40 °C. The control effect of setting the thermal insulation buffer layer is the best as a single measure, followed by the cooling water pipes, optimization of concrete proportion, layered construction and stress dissipation hole. The effect of outer insulation and inner cavity ventilation is poor. The recommended strategy includes optimizing concrete proportion and pouring concrete in three layers, in which the first layer and the second layer are respectively provided with a thermal insulation buffer layer and a stress dissipation hole. The results of field tests verify the effectiveness of the recommended strategy for crack suppression.



Key wordsassembly construction      prefabricated bridge pier      thermal stress      crack control      field test     
Received: 11 January 2020      Published: 05 January 2021
CLC:  U 443  
Corresponding Authors: Rong-qiao XU     E-mail: lizhongnan6@163.com;xurongqiao@zju.edu.cn
Cite this article:

Zhong-nan LI,Hai-bo ZHU,Yang ZHAO,Xue LUO,Rong-qiao XU. Thermal stress analysis and crack control of assembled bridge pier. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 46-54.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.01.006     OR     http://www.zjujournals.com/eng/Y2021/V55/I1/46


装配式桥墩温度应力分析与裂纹控制

以某在建跨海大桥为例,通过数值仿真分析预制桥墩在与现浇承台连接施工时的温度应力及其影响因素,结合海上施工条件提出裂缝控制措施并进行现场试验. 分析结果表明,填芯混凝土热膨胀是预制桥墩温度应力的主要因素,温度梯度为次要因素. 混凝土入模温度从10 °C提高到40 °C,最大拉应力增加15.4%. 作为单项措施,设置隔热缓冲层的控制效果最佳,其次为冷却水管、优化混凝土配合比、分层施工和应力消散孔,外壁保温与内腔通风措施的效果较差. 提出的裂纹控制方案是采用优化混凝土配合比,且分3层浇筑混凝土,第1层和第2层分别设置隔热缓冲层和应力消散孔,通过现场试验验证了该方案可以有效地控制裂纹.


关键词: 装配化施工,  预制桥墩,  温度应力,  裂纹控制,  现场试验 
材料 ρB/(kg·m?3)
碎石(5~16 mm) 314
碎石(16~25 mm) 734
中砂 759
PⅡ 52.5水泥 186
粉煤灰 83
矿粉 145
145
减水剂(标准型) 4.14
Tab.1 Initial mix proportion of core filling concrete
Fig.1 Structure of prefabricated pier and cap
Fig.2 Detailed structure of connection part
Fig.3 Finite element model for numerical analysis of thermal stress
Fig.4 Comparison between measured temperature values and calculated temperature values
Fig.5 Distribution of principal tensile stress on surface of pier
Fig.6 Effect of thermal expansion and temperature gradient on tensile stress
Fig.7 Effect of concrete pouring temperature on tensile stress
配合比 ρ(水泥)/
(kg·m?3)
ρ(粉煤灰)/
(kg·m?3)
ρ(矿粉)/
(kg·m?3)
${\theta _{\rm{s}}}$ /°C m
配合比1 160 120 120 59 0.69
配合比2 140 120 140 54 0.62
配合比3 120 120 160 48 0.50
Tab.2 Parameters of optimized concrete mix proportion
Fig.8 Arrangement of cooling water pipes
参数 数值
E/MPa 2.5
$\rho $/(kg·m?3) 20
$\mu$ 0.09
$\lambda $/(W·m?2· K?1) 0.040
c /(J·kg?1·K?1) 121
Tab.3 Parameters of sponge rubber board
序号 控制措施 分析工况 ${\theta _1}$ /°C ${\theta _2}$ /°C ${p_{\rm{m}}}$ /
MPa
$({p_{\rm{m}}} - {p_0})\times$ ${p_0}^{-1}$/%
0 无措施 ? 65.4 23.2 ? 0
1 外壁保温与内腔通风 ? 65.2 17.8 6.31 ?1.1
2 应力扩散孔 方孔
(3.0 m×1.0 m)
55.8 21.6 5.98 ?6.3
圆孔
(直径1.6 m)
60.2 21.7 5.91 ?7.4
3 分层施工 层间间隔
时间48 h
61.8 22.0 5.74 ?10.0
层间间隔
时间72 h
59.0 21.3 5.13 ?19.6
层间间隔
时间96 h
56.8 20.1 4.72 ?26.0
4 优化混凝土配合比 配合比1 62.3 21.7 6.08 ?4.7
配合比2 57.5 19.7 5.49 ?13.9
配合比3 50.8 16.8 4.66 ?27.0
5 冷却水管 钢管 53.0 21.0 4.42 ?30.7
PVC管 55.0 21.8 4.80 ?24.8
6 隔热缓冲层 层高1.2 m 65.3 22.3 5.90 ?7.5
层高1.8 m 65.5 19.5 5.36 ?16.0
层高2.5 m 65.6 12.0 3.69 ?42.2
Tab.4 Calculation results of effectiveness of control measures
Fig.9 Combined control measures of thermal stress
Fig.10 Layout of temperature and strain sensors
施工层数 ${\theta _1}$/°C ${\theta _2}$/°C ${\theta _3}$/°C
实测值 计算值 实测值 计算值 实测值 计算值
注:1)括号内数据为温度数据对应的时间.
第1层2.5 m 83.0(52 h)1) 78.0(60 h) 17.8(40 h) 15.9(52 h) 12.7(28 h) 12.8(24 h)
第2层1.5 m 49.7(130 h) 73.3(140 h) 22.1(148 h) 22.0(140 h) ? ?
第3层1.8 m 81.6(210 h) 74.7(212 h) 26.9(210 h) 24.8(212 h) ? ?
Tab.5 Maximum temperature in field test
Fig.11 Temperature data of each measuring point in field test
10?6
测点 第1层2.5 m 第2层1.5 m 第3层1.8 m
εm εc εm εc εm εc
注:1)括号内数据为应变数据对应的时间.
1 98(96 h)1) 82(96 h) 92(96 h) 131(140 h) 68(220 h) 121(168 h)
2 105(96 h) 71(96 h) 98(96 h) 152(132 h) 82(244 h) 139(204 h)
3 44(62 h) 35(72 h) 106(160 h) 120(132 h) 108(244 h) 145(214 h)
4 25(96 h) ?9(96 h) 63(144 h) 75(140 h) 103(240 h) 120(240 h)
5 18(96 h) ?9(72 h) 60(129 h) 110(132 h) 90(224 h) 148(220 h)
6 60(96 h) 80(84 h) 86(122 h) 128(140 h) 63(224 h) 119(168 h)
7 48(96 h) 25(72 h) 85(129 h) 116(142 h) 90(240 h) 108(188 h)
8 38(62 h) ?3(96 h) 95(156 h) 90(140 h) 105(238 h) 147(212 h)
9 ?3(60 h) ?19(96 h) 44(152 h) 47(140 h) 87(220 h) 118(214 h)
Tab.6 Maximum tensile strain in field test
Fig.12 Tensile strain data of each measuring point in field test
[1]   KJELDGAARD N, FRIES G Construction of the great belt west bridge[J]. Structural Engineering International, 1995, 5 (4): 214- 215
doi: 10.2749/101686695780600809
[2]   CHEN Wai-fah, DUAN Lian. Handbook of international bridge engineering [M]. Boca Raton: CRC Press, 2014.
[3]   LI Fang-yuan, SHEN Yin Full-scale test of the hydration heat and the curing method of the wet joints of a precast segmental pier of a bridge[J]. European Journal of Environmental and Civil Engineering, 2017, 21 (3): 348- 370
doi: 10.1080/19648189.2015.1119063
[4]   刘忠友 大桥预制墩湿接头裂缝预防措施探讨[J]. 水运工程, 2008, (12): 164- 167
LIU Zhong-you Preventive measures for fissures in wet joints of bridge’s prefabricated pier[J]. Port and Waterway Engineering, 2008, (12): 164- 167
doi: 10.3969/j.issn.1002-4972.2008.12.034
[5]   王洪纲. 热弹性力学概论[M]. 北京: 清华大学出版社, 1989.
[6]   NOWACKI W. Thermoelasticity [M]. Kent: Elsevier, 2014.
[7]   朱伯芳. 有限单元法原理与应用[M]. 北京: 中国水利水电出版社, 2009.
[8]   朱伯芳. 大体积混凝土温度应力与温度控制[M]. 北京: 中国电力出版社, 1998.
[9]   WU Y, LUNA R Numerical implementation of temperature and creep in mass concrete[J]. Finite Elements in Analysis and Design, 2001, 37 (2): 97- 106
doi: 10.1016/S0168-874X(00)00022-6
[10]   LACKNER R, MANG H A Chemoplastic material model for the simulation of early-age cracking: from the constitutive law to numerical analyses of massive concrete structures[J]. Cement and Concrete Composites, 2004, 26 (5): 551- 562
doi: 10.1016/S0958-9465(03)00071-4
[11]   雷宇芳, 刘可心, 汪发红, 等 杭州湾跨海大桥湿接头混凝土裂缝原因分析及防裂措施研究施工关键技术研究[J]. 公路, 2006, (9): 90- 93
LEI Yu-fang, LIU Ke-xin, WANG Fa-hong, et al Analysis of reasons of concrete crack in cast-in-situ pier base of Hangzhou Bay sea-crossing bridge and a study on measures for cracking prevention[J]. Highway, 2006, (9): 90- 93
doi: 10.3969/j.issn.0451-0712.2006.09.020
[12]   许宏亮, 秦明强 金塘大桥浪溅区混凝土结构的裂缝控制[J]. 公路, 2009, (1): 146- 149
XU Hong-liang, QIN Ming-qiang Cracking control technique of concrete structure in splash zone of Jintang Bridge[J]. Highway, 2009, (1): 146- 149
[13]   王新刚, 孙业发, 徐鸿玉 港珠澳大桥预制桥墩裂缝控制技术[J]. 中国港湾建设, 2015, 35 (12): 66- 70
WANG Xin-gang, SUN Ye-fa, XU Hong-yu Control technology for prefabricated pier crack of Hongkong Zhuhai Macao Bridge[J]. China Harbour Engineering, 2015, 35 (12): 66- 70
[14]   孔祥谦. 热应力有限单元法分析[M]. 上海: 上海交通大学出版社, 1999.
[15]   ROHSENOW W M, HARTNETT J P, GANIC E N. Handbook of heat transfer fundamentals [M]. New York: McGraw-Hill, 1983.
[16]   British Standards Institution. Eurocode-2: design of concrete structures, Part1-1: general rules for buildings [S]. London: British Standards Institution, 2004.
[17]   刘宏伟. 混凝土早龄期弹性模量无损检测初探[D]. 南京: 河海大学, 2006: 38.
LIU Hong-wei. Tentative research on non-destructive detection of concrete early-age elastic modulus [D]. Nanjing: Hohai University, 2006: 38.
[18]   顾文发. C40商品混凝土早龄期力学性能试验研究[D]. 北京: 北京交通大学, 2012: 47.
GU Wen-fa. Experimental study on mechanical properties of C40 commercial concrete at early age [D]. Beijing: Beijing Jiaotong University, 2012: 47.
[19]   中华人民共和国住房和城乡建设部. 大体积混凝土施工规范: GB 50496—2009 [S]. 北京: 中国计划出版社, 2009.
[20]   Japan Society of Civil Engineers. コンクリート標準示方書設計編[S]. 東京都: 土木学会出版委員会, 2012.
[21]   SCHINDLER A K Effect of temperature on hydration of cementitious materials[J]. ACI Materials Journal, 2004, 101 (1): 72- 81
[22]   SCHINDLER A K, FOLLIARD K J Heat of hydration models for cementitious materials[J]. ACI Materials Journal, 2005, 102 (1): 24- 33
[23]   屈铁军, 徐荣桓, 石云兴 配筋率对钢筋混凝土构件弹性模量影响的试验研究[J]. 混凝土, 2014, (9): 113- 115
QU Tie-jun, XU Rong-huan, SHI Yun-xing Experimental study on influence of ratio of reinforcement to modulus of elasticity of reinforced concrete component[J]. Concrete, 2014, (9): 113- 115
doi: 10.3969/j.issn.1002-3550.2014.09.029
[24]   汪冬冬, 王成启, 谷坤鹏 不同胶凝材料混凝土绝热温升试验[J]. 水运工程, 2009, (10): 10- 13
WANG Dong-dong, WANG Cheng-qi, GU Kun-peng Experimental study on adiabatic temperature rising for concrete of different cement materials[J]. Port and Waterway Engineering, 2009, (10): 10- 13
[25]   YANG J, HU Y, ZHENG Z, et al Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes[J]. Applied Thermal Engineering, 2012, 35: 145- 156
doi: 10.1016/j.applthermaleng.2011.10.016
[1] Si XIAO,Kui-hua WANG,Meng-bo WANG. Vertical dynamic response of pile-soil plug based on surrounding fictitious soil pile model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1593-1603.
[2] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.
[3] Chun-peng LU,Xing-hong LIU,Zhi-fang ZHAO,Gang MA,Rui-xin JIN,Xiao-lin CHANG. Effect of time-varying thermal expansion coefficient on thermal stress simulation of concrete[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 284-291.
[4] WANG Cheng quan, SHEN Yong gang, WANG Gang, XIE Xu. Field tests on mechanical characteristic of link slab on hollow-cored slab beam bridge[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1438-1445.
[5] SHEN Guo hui, YAO Dan, YU Shi ce, LOU Wen juan, XING Yue long, PAN Feng. Wind tunnel test of wind field characteristics on isolated hill and two adjacent hills[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 805-812.
[6] LIU Yi jun, LU Huan, ZHANG Gui yong, ZONG Zhi. Thermal stress analysis of high temperature pipe using cell-based smoothed point interpolation method (CS-PIM)[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2113-2119.
[7] CHEN Liang-liang, ZHU Chang-sheng,WANG Meng. Strength analysis for thermal carbon-fiber retaining rotor in high-speed permanent magnet machine[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 162-172.
[8] ZHAN Liang-tong, XU Hui, LAN Ji-wu, LIU Zhao, CHEN Yun-min. Field and laboratory study on hydraulic characteristics of MSWs[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 478-486.
[9] PAN Jin-long, QI Chang-yu, HUANG Yi-fang, WU Hong-lei. Determination and simulation of temperature effect
 on super-long and underground mass concrete structure
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(9): 1680-1687.
[10] SHU E-Na, ZHANG Wei, SHEN Yong-Gang. Control measures for preventing crack on the surface
of mass concrete abutment in early stage
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1621-1628.