Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (11): 2120-2127    DOI: 10.3785/j.issn.1008-973X.2020.11.007
    
Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state
Yu-qi ZHANG1(),Nan JIANG1,2,*(),Yong-sheng JIA2,3,Chuan-bo ZHOU1,Xue-dong LUO1,Ting-yao WU1
1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
2. Hubei Key Laboratory of Engineering Blasting, Wuhan 430024, China
3. Wuhan Explosion and Blasting Co. Ltd, Wuhan 430024, China
Download: HTML     PDF(1355KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The blasting vibration speed and dynamic strain distribution characteristics of the pipeline under no pressure and different working conditions (different doses and different blasting distances) were analyzed through a full-scale embedded high-density polyethylene (HDPE) pipeline field blasting test, combined with the characteristics of the strata in the pipeline pre-burial site in Wuhan. The reliability of the calculation model and the parameters was verified by comparing with the field test data, combined with LSDYNA dynamic finite element analysis method. The dynamic response characteristics of HDPE pipelines with different operating conditions (different filling water level heights) under blasting vibration loads were analyzed. A safety control standard for the HDPE corrugated pipe blasting vibration speed was proposed, combined with the hoop allowable stress control criteria for pipeline operating conditions. Results indicate that the circumferential strain reaches the largest value when the HDPE pipeline is affected by blasting vibration. The combined vibration and the equivalent stress of the pipeline decrease with the increase of the water level in the pipe, and the combined vibration speed and the equivalent stress of the front explosion side of the pipeline are greater than those of the back explosion side at the same section. The maximum combined vibration of an empty pipe was 18.56 cm/s, and the equivalent stress was 0.912 MPa. The vibration speed and the main frequency of the X-direction at the dangerous section of the pipeline decrease as the water level rises, and these of the Y and Z directions increase as the water level rises. The safety control speed of the pipeline operating state obtained through the preparation of Mises yield strength was 25.79 cm/s.



Key wordsblasting vibration      high-density polyethylene (HDPE) pipe      water filling pipe      field test      numerical simulation      control speed     
Received: 02 December 2019      Published: 15 December 2020
CLC:  TU 992  
Corresponding Authors: Nan JIANG     E-mail: yuqiz@cug.edu.cn;happyjohn@foxmail.com
Cite this article:

Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.11.007     OR     http://www.zjujournals.com/eng/Y2020/V54/I11/2120


运营充水状态高密度聚乙烯管的爆破振动响应特性

结合武汉市管道预埋地层特点,通过全尺度预埋高密度聚乙烯(HDPE)管道现场爆破试验,分析不同工况条件下(不同药量、不同爆破心距)无压状态管道爆破振动速度及动应变分布特征;结合LSDYNA动力有限元分析方法,通过现场试验数据的对比验证计算模型及参数的可靠性;分析爆破振动荷载作用下不同运营状态(即不同充水水位高度)HDPE管道动力响应特性;结合管道运营状态环向容许应力控制准则,提出HDPE波纹管爆破振动速度安全控制标准. 研究结果表明:当HDPE管道受到爆破振动影响时,环向应变最大;管道合振速与等效应力随管内水位高度的增加而降低,且管道同一截面处迎爆侧的合振速和等效应力大于背爆侧,最大空管合振速为18.56 cm/s,最大等效应力为0.912 MPa;管道振速最大位置处X方向振动速度与主频随水位高度升高而降低,YZ方向振动速度与主频随水位高度的升高而增加;通过米塞斯屈服强度准备得到的管道运营状态安全控制速度为25.79 cm/s.


关键词: 爆破振动,  高密度聚乙烯(HDPE)管,  充水管道,  现场试验,  数值模拟,  控制速度 
Fig.1 Schematic diagram of HDPE pipe size used in blasting test
工况 炸药埋深/m 炸药量/kg 水平距离/m
1 6.5 8.0 25
2 6.5 8.0 20
3 6.5 8.0 15
4 6.5 8.0 10
5 4.0 8.0 25
6 4.0 8.0 20
7 4.0 8.0 15
8 4.0 8.0 10
9 4.0 9.6 5
Tab.1 Working parameters of blasting test
Fig.2 Schematic diagram of blasting test and part of holes
Fig.3 Schematic diagram of vibration velocity measurement point
Fig.4 Dynamic strain measurement point diagram
监测点 现场试验 数值模拟 EVR /%
vX /(cm·s?1) vY /(cm·s?1) vZ /(cm·s?1) vR /(cm·s?1) vX /(cm·s?1) vY /(cm·s?1) vZ /(cm·s?1) vR /(cm·s?1)
D1 18.99 4.12 2.47 19.58 15.44 7.25 3.51 17.41 ?11.08
D2 7.25 2.67 7.63 10.86 9.34 5.65 3.23 11.38 4.85
D3 10.39 5.33 3.24 12.12 11.60 5.88 3.11 13.37 10.32
D4 17.81 8.66 3.91 20.19 16.43 6.42 3.55 17.99 ?10.87
D5 8.51 5.12 3.41 10.50 11.55 2.03 2.89 12.08 14.98
D6 13.34 4.51 5.73 15.20 10.50 8.44 4.23 14.12 ?7.11
D7 15.19 4.95 4.30 16.54 13.20 6.11 6.33 15.86 ?4.11
Tab.2 Comparison of field test and numerical simulation results of vibration velocity
Fig.5 Axial and circumferential dynamic strain in blasting test condition 9 measuring point 2
Fig.6 Numerical model and meshing of pipeline blasting test
材料 ρ /(g·m?3) E /GPa G /GPa μ c /MPa φ /(°) σt /MPa
管道 0.936 0.834 9 ? 0.46 ? ? 31.600
粉质黏土 1.980 0.039 0 4.3 0.35 0.035 15 0.028
砂岩 2.680 52.000 0 11.2 0.25 5.500 43 2.580
Tab.3 Pipeline,silty clay and sandstone material model parameter table
ρw/ (g·cm?3) c0 / (m·s?1) S1 S2 S3 γ0
1.0 1 500 2.560 0 1.986 0 1.226 8 0.5
Tab.4 Model parameters of water material
参数 ρe /(g·cm?3) A /GPa B /GPa R1 R2 ω E0 /GPa V /cm3
数值 1.25 214.0 18.2 4.2 0.9 0.15 4.19 1
Tab.5 Detonation product parameter table
Fig.7 Grid division for half water and full water conditions
H/cm vX /(cm·s?1) fX/Hz vY /(cm·s?1) fY /Hz vZ /(cm·s?1) fZ /Hz vR /(cm·s?1)
0 18.35 72 6.03 31 2.21 37 19.44
20 17.33 61 6.91 45 3.02 58 18.90
40 15.83 52 8.52 68 3.41 69 18.30
60 14.37 38 9.41 87 3.99 82 17.63
80 12.21 26 10.21 103 4.33 99 16.49
Tab.6 Vibration velocity and main frequency of dangerous section in five kinds of numerical simulation working conditions
Fig.8 Fitting curve of vibration velocity and pipeline water level height
Fig.9 Velocity of vibration at each point of dangerous section
Fig.10 Equivalent stress at each point of dangerous section
Fig.11 Fitting curve of equivalent stress and resultant peak velocity
Fig.12 Schematic diagram of stress direction
[1]   GIANNAROS E, KOTZAKOLIOS T, KOSTOPOULOS V Blast response of composite pipeline structure using finite element techniques[J]. Journal of Composite Materials, 2016, 50 (25): 3459- 3476
doi: 10.1177/0021998315618768
[2]   WON J H, KIM M K, KIM G, et al Blast-induced dynamic response on the interface of a multilayered pipeline[J]. Structure and Infrastructure Engineering, 2014, 10 (1): 80- 92
doi: 10.1080/15732479.2012.699532
[3]   HA D, ABDOUN T H, O’ROURKE M J, et al Centrifuge modeling of earthquake effects on buried high-density polyethylene (HDPE) pipelines crossing fault zones[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134 (10): 1501- 1515
doi: 10.1061/(ASCE)1090-0241(2008)134:10(1501)
[4]   ABDOUN T H, HA D, MICHAEL J, et al Factors influencing the behavior of buried pipelines subjected to earthquake faulting[J]. Soil Dynamics and Earthquake Engineering, 2009, 29 (3): 415- 427
doi: 10.1016/j.soildyn.2008.04.006
[5]   王海涛, 金慧, 贾金青, 等 地铁隧道钻爆法施工对邻近埋地管道影响的模型试验研究[J]. 岩石力学与工程学报, 2018, 37 (Suppl.1): 3332- 3339
WANG Hai-tao, JIN Hui, JIA Jin-qing, et al Model test study on the influence of subway tunnel drilling and blasting construction on adjacent buried pipelines[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (Suppl.1): 3332- 3339
[6]   朱斌, 蒋楠, 贾永胜, 等 下穿燃气管道爆破振动效应现场试验研究[J]. 岩石力学与工程学报, 2019, 38 (12): 2582- 2592
ZHU Bin, JIANG Nan, JIA Yong-sheng, et al Field experiment on blasting vibration effect of underpass gas pipeline[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (12): 2582- 2592
[7]   夏宇磬, 蒋楠, 姚颖康, 等. 粉质黏土层预埋承插式混凝土管道对爆破振动的动力响应[J]. 爆炸与冲击, 2020, 40(4): 043302.
XIA Yu-qing, JIANG Nan, YAO Ying-kang, et al. Experiment study on dynamic response of spigot concrete pipe buried in silty clay layer subjected to blasting seismic wave [J]. Explosion and Shock Waves, 2020, 40(4): 043302.
[8]   钟冬望, 卢哲, 黄雄, 等 爆破荷载下埋地PE管道动力响应的试验研究[J]. 爆破, 2018, 35 (4): 1- 5
ZHONG Dong-wang, LU Zhe, HUANG Xiong, et al Experimental study on buried PE pipeline under blasting loads[J]. Blasting, 2018, 35 (4): 1- 5
doi: 10.3963/j.issn.1001-487X.2018.04.001
[9]   ZHANG J, ZHANG L, LIANG Z Buckling failure of a buried pipeline subjected to ground explosions[J]. Process Safety and Environmental Protection, 2018, 114: 36- 47
doi: 10.1016/j.psep.2017.11.017
[10]   PARVIZ M, AMINNEJAD B, FIOUZ A Numerical simulation of dynamic response of water in buried pipeline under explosion[J]. KSCE Journal of Civil Engineering, 2017, 21 (7): 1- 9
[11]   FRANCINI R B, BALTZ W N Blasting and construction vibrations near existing pipelines: what are the appropriate levels?[J]. Journal of Pipeline Engineering, 2009, 8 (4): 253- 262
[12]   JIANG N, GAO T, ZHOU C, et al Effect of excavation blasting vibration on adjacent buried gas pipeline in a metro tunnel[J]. Tunnelling and Underground Space Technology, 2018, 81: 590- 601
doi: 10.1016/j.tust.2018.08.022
[13]   XIA Y, JIANG N, ZHOU C, et al Safety assessment of upper water pipeline under the blasting vibration induced by Subway tunnel excavation[J]. Engineering Failure Analysis, 2019, 104: 626- 642
doi: 10.1016/j.engfailanal.2019.06.047
[14]   WU K, ZHANG H, LIU X, et al Stress and strain analysis of buried PE pipelines subjected to mechanical excavation[J]. Engineering Failure Analysis, 2019, 106: 104171
doi: 10.1016/j.engfailanal.2019.104171
[15]   张震, 周传波, 路世伟, 等 爆破振动作用下邻近埋地混凝土管道动力响应特性[J]. 哈尔滨工业大学学报, 2017, 46 (9): 79- 84
ZHANG Zhen, ZHOU Chuan-bo, LU Shi-wei, et al Dynamic response characteristics of adjacent buried concrete pipelines under blasting vibration[J]. Journal of Harbin Institute of Technology, 2017, 46 (9): 79- 84
doi: 10.11918/j.issn.0367-6234.201611089
[16]   张震, 周传波, 路世伟, 等 超浅埋地铁站通道爆破暗挖地表振动传播特征[J]. 中南大学学报: 自然科学版, 2017, 48 (8): 2119- 2125
ZHANG Zhen, ZHOU Chuan-bo, LU Shi-wei, et al Characteristics of surface vibration propagation in tunnels of ultra-shallow buried subway stations[J]. Journal of Central South University: Science and Technology, 2017, 48 (8): 2119- 2125
[17]   贾永胜, 钟冬望, 姚颖康, 等 基坑爆破预留层对围护桩的保护作用数值分析[J]. 工程爆破, 2017, 23 (5): 1- 4
JIA Yong-sheng, ZHONG Dong-wang, YAO Ying-kang, et al Numerical analysis of the protective effect of the reserved layer of foundation pit blasting on retaining piles[J]. Engineering Blasting, 2017, 23 (5): 1- 4
doi: 10.3969/j.issn.1006-7051.2017.05.001
[18]   ZHONG D, GONG X, HAN F, et al Monitoring the dynamic response of a buried polyethylene pipe to a blast wave: an experimental study[J]. Applied Sciences, 2019, 9 (8): 1663
doi: 10.3390/app9081663
[19]   贵州省住房和城乡建设厅. 室外埋地聚乙烯(PE)给水管道工程技术规程: DBJ52T 039—2017 [S]. 贵阳: 中国建筑工业出版社, 2017: 27-35.
[20]   田峰, 高岩, 孙承华 动力管道的应力分析及管壁厚计算[J]. 管道技术与设备, 2000, (4): 4- 6
TIAN Feng, GAO Yan, SUN Cheng-hua Stress analysis and pipe wall thickness calculation of power pipeline[J]. Pipeline Technique and Equipment, 2000, (4): 4- 6
[21]   罗利, 马燕, 张永军, 等. 地基沉降作用下埋地聚乙烯管强度失效的数值模拟[J]. 建筑材料学报, 2020, 23(2): 473-478.
LUO Li, MA Yan, ZHANG Yong-jun, et al. Numerical simulation of strength failure of buried polyethylene pipes under ground settlement [J]. Journal of Building Materials, 2020, 23(2): 473-478.
[1] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[2] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[3] Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.
[4] Zhong-nan LI,Hai-bo ZHU,Yang ZHAO,Xue LUO,Rong-qiao XU. Thermal stress analysis and crack control of assembled bridge pier[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 46-54.
[5] Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.
[6] Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.
[7] Si XIAO,Kui-hua WANG,Meng-bo WANG. Vertical dynamic response of pile-soil plug based on surrounding fictitious soil pile model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1593-1603.
[8] Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.
[9] Zhong YUN,Meng WEN,Zi-rong LUO,Long CHEN. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 407-415.
[10] Si-yuan XU,Jun DU,Guang-xi ZHAO,Zheng-ying WEI. Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2224-2232.
[11] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.
[12] Zhong YUN,Meng WEN,Yi JIANG,Long CHEN,Long-fei FENG. Design and hydrodynamic analysis of pectoral fin oscillation propulsion mechanism of bionic manta ray[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 872-879.
[13] Wen-liang QIU,Ha-si HU,Tian TIAN,Zhe ZHANG. Structural parameters affecting seismic behavior of concrete-filled steel tube composite piers[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 889-898.
[14] Yu-qi HUANG,Pan MEI,Xiao-ji CHEN,Chang-shui DENG. Heating strategy for electric vehicular battery pack based on CFD analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 207-213.
[15] Jin XIA,Shi-jie JIN,Xiao-yu HE,Xiao-mei XU,Wei-liang JIN. Effect of electric potential condition on numerical simulation of electrochemical rehabilitation for concrete structures[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2298-2308.