|
|
Diagnosis of road drainage inlets’ abnormal condition using multi-hydrological data association analysis |
Gong CHEN1( ),Chun-hua ZHENG2,Xian-ming WENG2,Baustani HAMEED1,Hong-hao HU1,Xiao-yu MA2,Jing-qing LIU1,*( ) |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Wenzhou Drainage Limited Company, Wenzhou 325000, China |
|
|
Abstract A method of using monitored hydrological data to assess the degree of inlet blockage was proposed in order to quantitatively analyze the uncertainty of the drainage system. The correlation between the monitored hydrological data and the blocked area of the inlet was obtained by describing the physical model of the road drainage inlet under flooding. The average clogged area of the inlet under each independent water accumulation event was calculated and defined as the index of inlet’s blockage degree. The moving average method was used to process the calculation results in order to visually analyze the degree of inlet’s blockage. The method was applied to an eastern coastal city, and the inlet cleanup records were used to verify the calculation results. Results show that 83% of inlet blockage can be well identified, of which the accuracy of the points diagnosed as cleared is 75%, the accuracy of the points diagnosed as uncleared is 89%. Errors in the calculation results are mostly caused by incomplete records. Some branch pipes may be gradually cleaned up after the inlet is cleared, which interferes with the calculation results.
|
Received: 29 July 2020
Published: 05 January 2021
|
|
Corresponding Authors:
Jing-qing LIU
E-mail: 21812068@zju.edu.cn;liujingqing@zju.edu.cn
|
基于多水文数据关联分析的雨水口异常诊断
为了定量探究排水系统的不确定性,基于监测水文数据提出雨水口堵塞程度的评估方法. 通过描述雨水口淹没入流状态下的物理模型,获得监测水文数据与雨水口堵塞面积的关联;计算每次独立积水事件下雨水口平均堵塞面积,作为雨水口堵塞程度评估指标;使用移动平均法对评估指标进行处理,能够直观分析出雨水口的堵塞程度. 将该方法应用于东部沿海城市研究区域,用雨水口清理记录进行验证. 结果表明,有83%研究点位的雨水口堵塞情况可以被很好地鉴别出来,其中诊断为堵塞并被清理的点位准确率为75%,诊断为堵塞但未被清理的点位准确率为89%. 预测失败的点位多由雨水口清理记录不全造成,雨水口侧支管堵塞疏通的延后性会对计算结果造成干扰.
关键词:
城市内涝,
城市排水系统,
雨水口,
堵塞评估,
时间序列分析
|
|
[1] |
HENONIN J, RUSSO B, MARK O, et al Real-time urban flood forecasting and modelling: a state of the art[J]. Journal of Hydroinformatics, 2013, 15 (3): 717- 736
doi: 10.2166/hydro.2013.132
|
|
|
[2] |
PALLA A, COLLI M, CANDELA A, et al Pluvial flooding in urban areas: the role of surface drainage efficiency[J]. Journal of Flood Risk Management, 2018, 11: S663- S676
doi: 10.1111/jfr3.12246
|
|
|
[3] |
GóMEZ M, RABASSEDA G H, RUSSO B Experimental campaign to determine grated inlet clogging factors in an urban catchment of Barcelona[J]. Urban Water Journal, 2013, 10 (1): 50- 61
doi: 10.1080/1573062X.2012.690435
|
|
|
[4] |
ARONICA G T, LANZA L G Drainage efficiency in urban areas: a case study[J]. Hydrological Processes, 2005, 19 (5): 1105- 1119
doi: 10.1002/hyp.5648
|
|
|
[5] |
LEIT?O J P, SIM?ES N E, PINA R D, et al Stochastic evaluation of the impact of sewer inlets’ hydraulic capacity on urban pluvial flooding[J]. Stochastic Environmental Research and Risk Assessment, 2017, 31 (8): 1907- 1922
doi: 10.1007/s00477-016-1283-x
|
|
|
[6] |
DEL GIUDICE D, HONTI M, SCHEIDEGGER A, et al Improving uncertainty estimation in urban hydrological modeling by statistically describing bias[J]. Hydrology and Earth System Sciences, 2013, 17 (10): 4209- 4225
doi: 10.5194/hess-17-4209-2013
|
|
|
[7] |
周云峰, 周永潮, 郑春华, 等 采用Sobol方法的暴雨径流管理模型参数灵敏度分析[J]. 浙江大学学报: 工学版, 2019, 53 (2): 347- 354 ZHOU Yun-feng, ZHOU Yong-chao, ZHENG Chun-hua, et al Sensitivity analysis of parameters of storm water management model with Sobol method[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (2): 347- 354
|
|
|
[8] |
PINA R, OCHOA-RODRIGUEZ S, SIM?ES N, et al Semi- vs. fully-distributed urban stormwater models: model set up and comparison with two real case studies[J]. Water, 2016, 8 (2): 58
doi: 10.3390/w8020058
|
|
|
[9] |
KOLSKY P, BUTLER D Performance indicators for urban storm drainage in developing countries[J]. Urban Water, 2002, 4 (2): 137- 144
doi: 10.1016/S1462-0758(02)00011-0
|
|
|
[10] |
CHERQUI F, BELMEZITI A, GRANGER D, et al Assessing urban potential flooding risk and identifying effective risk-reduction measures[J]. Science of the Total Environment, 2015, 514: 418- 425
doi: 10.1016/j.scitotenv.2015.02.027
|
|
|
[11] |
CHEN Y, ZHOU H, ZHANG H, et al Urban flood risk warning under rapid urbanization[J]. Environmental Research, 2015, 139: 3- 10
doi: 10.1016/j.envres.2015.02.028
|
|
|
[12] |
FRIES K J, KERKEZ B Using sensor data to dynamically map large-scale models to site-scale forecasts: a case study using the national water model[J]. Water Resources Research, 2018, 54 (8): 5636- 5653
doi: 10.1029/2017WR022498
|
|
|
[13] |
AGGARWAL A, RAFIQUE F, RAJESH E, et al Urban flood hazard mapping using change detection on wetness transformed images[J]. Hydrological Sciences Journal, 2016, 61 (5): 816- 825
|
|
|
[14] |
ROSSER J F, LEIBOVICI D G, JACKSON M J Rapid flood inundation mapping using social media, remote sensing and topographic data[J]. Natural Hazards, 2017, 87: 103- 120
doi: 10.1007/s11069-017-2755-0
|
|
|
[15] |
FRENCH R The non-impact of Debris blockages on the August 1998 Wollongong flooding[J]. Australian Journal of Water Resources, 2012, 15 (2): 161- 169
|
|
|
[16] |
陈倩, 夏军强, 董柏良 城市洪涝中雨水口泄流能力的试验研究[J]. 水科学进展, 2020, 31 (1): 10- 17 CHEN Qian, XIA Jun-qiang, DONG Bo-liang Experimental study on discharge capacity of street inlet in urban flooding[J]. Advances in Water Science, 2020, 31 (1): 10- 17
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|