|
|
Three-dimensional mesoscopic study on freeze-thaw of concrete based on multi-field coupled model |
Kang-qiao HUANG( ),Cheng ZHAO,Wei ZHOU*( ),Xing-hong LIU,Gang MA |
State Key Laboratory of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China |
|
|
Abstract The shape of aggregate was simplified into sphere based on Monte-Carlo theory and the distribution of coarse aggregate particle size. Matlab and Comsol Multiphysics interface were applied for secondary development to generate a three-phase three-dimensional mesoscopic model of concrete that can distinguish aggregate, ITZ and mortar. The improved thermo-hydro-mechanical model was used, and the results accorded well with the experimental results. The coupled model was applied to analyze the behavior evolution law of concrete three-dimensional mesoscale under freeze-thaw conditions. Results show that the first principal stress of the whole sample decreases sharply and the aggregate is in compression while the mortar is in tension when the permeability is high. The overall stress of the sample shows a downward trend when the aggregate volume fraction increases. Motar permeability and aggregate volume fraction have great influence on the freeze-thaw resistance of concrete. The stress of concrete does not change much under different ITZ coefficients of linear thermal expansion, indicating that ITZ coefficient has relatively little influence on the freeze-thaw resistance of concrete.
|
Received: 19 January 2020
Published: 05 January 2021
|
|
Corresponding Authors:
Wei ZHOU
E-mail: huangkangqiao@whu.edu.cn;zw_mxx@163.com
|
基于多场耦合模型的混凝土冻融三维细观研究
基于蒙特-卡洛理论和工程粗骨料粒径分布情况,将骨料形状简化为球形,应用Matlab与Comsol Multiphysics接口进行二次开发,以生成区分骨料、界面过渡区(ITZ)和砂浆的混凝土三相三维细观模型. 采用改进的热-水-力耦合模型,将耦合模型与物理试验进行验证分析,结果吻合较好. 将该耦合模型应用于研究冻融作用下混凝土三维细观尺度的性能演化规律. 研究结果表明,当渗透率较高时,试件整体第一主应力急剧减小,且出现骨料受压而砂浆受拉的情况;当骨料体积分数增大时,试件应力整体呈现下降趋势. 砂浆渗透率和骨料体积分数对混凝土抗冻融性能的影响较大. 不同的ITZ线膨胀系数下混凝土应力变化不大,说明ITZ线膨胀系数对混凝土抗冻融性能的影响相对较小.
关键词:
混凝土,
冻融循环,
三维细观尺度,
随机骨料模型,
多场耦合分析,
Comsol Multiphysics
|
|
[1] |
段安. 受冻融混凝土本构关系研究和冻融过程数值模拟[D]. 北京: 清华大学, 2009. DUAN An. Research on constitutive relationship of frozen-thawed concrete and mathematical modeling of freeze-thaw process [D]. Beijing: Tsinghua University, 2009.
|
|
|
[2] |
曾强, 李克非 冻融情况下降温速率对水泥基材料变形和损伤的影响[J]. 清华大学学报: 自然科学版, 2008, 48 (9): 1390- 1394 ZENG Qiang, LI Ke-fei Influence of freezing rate on the cryo-deformation and cryo-damage of cement-based materials during freeze-thaw cycles[J]. Journal of Tsinghua University: Science and Technology, 2008, 48 (9): 1390- 1394
|
|
|
[3] |
ZHOU W, ZHAO C, LIU X, et al Mesoscopic simulation of thermo-mechanical behaviors in concrete under frost action[J]. Construction and Building Materials, 2017, 157: 117- 131
doi: 10.1016/j.conbuildmat.2017.09.009
|
|
|
[4] |
POWERS T C A working hypothesis for further studies of frost resistance of concrete[J]. Journal of the American Concrete Institute, 1945, 41 (4): 245- 272
|
|
|
[5] |
POWERS T C. The air requirement of frost-resistance concrete [C]// Proceedings of Highway Research Board. Washington, D. C.: Highway Research Board, 1949: 184-211.
|
|
|
[6] |
POWERS T C, HELMUTH R A. Theory of volume changes in hardened Portland-Cement paste during freezing [C]// Proceedings of the Highway Research Board Annual Meeting. Washington, D. C. : Highway Research Board, 1953: 285-297.
|
|
|
[7] |
POWERS T C. Freezing effect in concrete [C]// Durability of Concrete. Detroit: ACI, 1975: 1-11.
|
|
|
[8] |
BA?ANT Z P, CHERN J C, ROSENBERG A M, et al Mathematical model for freeze-thaw durability of concrete[J]. Journal of the American Ceramic Society, 1988, 71 (9): 776- 783
doi: 10.1111/j.1151-2916.1988.tb06413.x
|
|
|
[9] |
ZUBER B, MARCHAND J Modeling the deterioration of hydrated cement systems exposed to frost action: Part 1: description of the mathematical model[J]. Cement and Concrete Research, 2000, 30 (12): 1929- 1939
doi: 10.1016/S0008-8846(00)00405-1
|
|
|
[10] |
ZUBER B, MARCHAND J Predicting the volume instability of hydrated cement systems upon freezing using poro-mechanics and local phase equilibria[J]. Materials and Structures, 2004, 37 (4): 257- 270
doi: 10.1007/BF02480634
|
|
|
[11] |
DUAN A, CHEN J, JIN W Numerical simulation of the freezing process of concrete[J]. Journal of Materials in Civil Engineering, 2013, 25 (9): 1317- 1325
doi: 10.1061/(ASCE)MT.1943-5533.0000655
|
|
|
[12] |
ZHOU W, FENG C, LIU X, et al A macro–meso chemo-physical analysis of early-age concrete based on a fixed hydration model[J]. Magazine of Concrete Research, 2016, 68 (19): 981- 994
doi: 10.1680/jmacr.15.00321
|
|
|
[13] |
糜凯华, 武亮, 吕晓波, 等 三维球形随机骨料混凝土细观数值模拟[J]. 水电能源科学, 2014, 32 (11): 124- 128 MEI Kai-hua, WU Liang, LV Xiao-bo, et al Numerical simulation of mesostructure for concrete with 3D spherical random aggregate particles[J]. Water Resources and Power, 2014, 32 (11): 124- 128
|
|
|
[14] |
华东水利学院. 水工设计手册(2): 地质水文建筑材料[M]. 北京: 水利电力出版社, 1984.
|
|
|
[15] |
李运成, 马怀发, 陈厚群, 等 混凝土随机凸多面体骨料模型生成及细观有限元剖分[J]. 水利学报, 2006, 37 (5): 588- 592 LI Yun-cheng, MA Huai-fa, CHEN Hou-qun, et al Approach to generation of random convex polyhedral aggregate model and plotting for concrete meso-mechanics[J]. Journal of Hydraulic Engineering, 2006, 37 (5): 588- 592
doi: 10.3321/j.issn:0559-9350.2006.05.012
|
|
|
[16] |
欧阳利军, 安子文, 杨伟涛, 等 混凝土界面过渡区(ITZ)微观特性研究进展[J]. 混凝土与水泥制品, 2018, (2): 7- 12 OUYANG Li-jun, AN Zi-wen, YANG Wei-tao, et al Research progress on microstructure characteristic of interface transition zone of concrete[J]. China Concrete and Cement Products, 2018, (2): 7- 12
doi: 10.3969/j.issn.1000-4637.2018.02.002
|
|
|
[17] |
MATALA S. Effects of carbonation on the pore structure of granulated blast furnace slag concrete [D]. Helsinki: Helsinki University of Technology, 1995.
|
|
|
[18] |
KONIORCZYK M, GAWIN D, SCHREFLER B A Modeling evolution of frost damage in fully saturated porous materials exposed to variable hygrothermal conditions[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 297: 38- 61
doi: 10.1016/j.cma.2015.08.015
|
|
|
[19] |
冀晓东, 宋玉普, 刘建 混凝土冻融损伤本构模型研究[J]. 计算力学学报, 2011, 28 (3): 461- 467 JI Xiao-dong, SONG Yu-pu, LIU Jian Study on frost damage constitutive model of concrete[J]. Chinese Journal of Computational Mechanics, 2011, 28 (3): 461- 467
doi: 10.7511/jslx201103026
|
|
|
[20] |
PICANDET V, KHELIDJ A, BASTIAN G Effect of axial compressive damage on gas permeability of ordinary and high performance concrete[J]. Cement and Concrete Research, 2001, 31 (11): 1525- 1532
|
|
|
[21] |
STéPHANE M, SELLIER A, PERRIN B Numerical analysis of frost effects in porous media. benefits and limits of the finite element poroelasticity formulation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36 (4): 438- 458
doi: 10.1002/nag.1014
|
|
|
[22] |
ZHOU W, TANG L, LIU X, et al Mesoscopic simulation of the dynamic tensile behaviour of concrete based on a rate-dependent cohesive model[J]. International Journal of Impact Engineering, 2016, 95 (9): 165- 175
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|