Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (5): 999-1009    DOI: 10.3785/j.issn.1008-973X.2021.05.021
    
Dynamic compressive properties and constitutive model of reactive powder concrete
Lei XIE(),Qing-hua LI*(),Shi-lang XU
School of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1936KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The granulated blast furnace slag was used to replace part of cement to prepare steam free reactive powder concrete (RPC), in order to overcome the disadvantage of traditional reactive powder concrete (RPC) that needs high temperature steam curing. The impact compression experiment of steam free RPC was carried out by using split Hopkinson pressure bar system (SHPB) with diameter of 80 mm, the influence of rate effect on the dynamic mechanical properties of steam free RPC was explored at the same time, and the dynamic constitutive model was established based on the experimental results. Results show that in the strain rate range of 10~290 $ {{\rm{s}}^{ - 1}}$, the peak stress, the peak strain and the impact toughness of the steam free RPC show obvious rate sensitivity, while the elastic modulus remains unchanged under different strain rates. On the aspect of constitutive model, both the improved Z-W-T viscoelastic constitutive model and the Weibull distribution-based model can well describe the dynamic stress-strain curve of steam free RPC. Due to the relatively fewer parameters Weibull distribution-based model contains, the stress-strain curve under different strain rates can be predicted based on the known relationship between parameters and strain rate in the model.



Key wordsreactive powder concrete (RPC)      split Hopkinson pressure bar system (SHPB)      strain rate effect      dynamic compressive property      dynamic constitutive model     
Received: 14 May 2020      Published: 10 June 2021
CLC:  TU 528.572  
Fund:  国家自然科学基金资助项目(51622811)
Corresponding Authors: Qing-hua LI     E-mail: 21712220@zju.edu.cn;liqinghua@zju.edu.cn
Cite this article:

Lei XIE,Qing-hua LI,Shi-lang XU. Dynamic compressive properties and constitutive model of reactive powder concrete. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 999-1009.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.05.021     OR     http://www.zjujournals.com/eng/Y2021/V55/I5/999


活性粉末混凝土冲击压缩性能及本构关系

为了克服传统活性粉末混凝土(RPC)须高温蒸养的缺点,采用粒化高炉矿渣代替部分水泥制备出免蒸养RPC,利用直径为80 mm的霍普金森压杆试验系统(SHPB)对免蒸养RPC进行冲击压缩试验研究,探究率效应对免蒸养RPC动态力学性能的影响规律,建立动态本构模型. 结果表明:在10~290 $ {{\rm{s}}^{ - 1}}$的应变率范围内,免蒸养RPC的峰值应力、峰值应变和冲击韧性表现出明显的率敏感性,而弹性模量在不同应变率下基本保持不变. 改进型Z-W-T黏弹性本构模型和基于Weibull分布的模型均能对免蒸养RPC的动态应力-应变曲线进行较好的描述,基于Weibull分布的模型所含参数相对较少,根据模型中各参数与应变率之间的关系可以对不同应变率下的应力-应变曲线进行预测.


关键词: 活性粉末混凝土(RPC),  霍普金森压杆试验系统(SHPB),  应变率效应,  冲击压缩性能,  动态本构模型 
Fig.1 Specimens prepared for dynamic test
Fig.2 Schematic diagram of split Hopkinson pressure bar
Fig.3 Average stress-strain curve under different impact pressures
Fig.4 Dynamic peak stress and DIF with different strain rates
Fig.5 Relationship between peak strain and strain rates
Fig.6 Comparison between energy absorption of different kinds of ultra high performance concrete
Fig.7 Proportion of stages under varied impact pressures
Fig.8 Nonlinear viscoelastic constitutive model
Fig.9 Comparison between theoretical stress-strain curves based on improved Z-W-T model and experimental curves
$ \dot{\varepsilon } $/ ${{\rm{s}}^{ - 1}}$ ${E^{'}}$/GPa ${E_2}$/GPa ${\theta _2}$/μs $m$ $n/ {10^{ - 3}}$ ${\varepsilon _{\rm{th}}}/{10^{ - 3}}$ $k$
10.57 287.360 ?174.1000 ?331.3900 0.8290 6.100 1.550 165.110
92.57 11.464 144.6740 9.7676 1.3390 1.030 2.247 41.889
140.10 ?6.563 146.8910 11.4730 0.9355 11.777 2.016 40.737
175.60 ?55.573 187.1640 15.8260 0.3990 106.628 2.205 174.509
200.27 ?50.976 178.6470 14.8670 0.4050 104.193 2.331 165.410
265.80 ?267.832 394.8950 34.2050 0.3240 88.225 3.240 176.505
289.43 ?112.749 244.3337 17.3725 0.3770 91.451 3.402 174.322
Tab.1 Fitted parameters of Z-W-T model
Fig.10 Variation curves of damage variables with strain at different strain rates
Fig.11 Elastic modulus under different strain rates
Fig.12 Comparison between theoretical stress-strain curves based on modified Weibull distribution and experimental curves
Fig.13 Comparison between predicted and experimental curves for dynamic stress-strain relationships of reactive powder concrete
[1]   RICHARD P, CHEYREZY M Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25 (7): 1501- 1511
doi: 10.1016/0008-8846(95)00144-2
[2]   MAROLIYA M K Micro structure analysis of reactive powder concrete[J]. International Journal of Engineering Research and Development, 2012, 4 (2): 68- 77
[3]   吴炎海, 何雁斌 活性粉末混凝土(RPC200)的配制试验研究[J]. 中国公路学报, 2003, (4): 45- 50
WU Yan-hai, HE Yan-bin Experimental study on the preparation of reactive powder concrete (RPC200)[J]. Chinese Journal of Highway and Transport, 2003, (4): 45- 50
[4]   郑文忠, 李莉 活性粉末混凝土配制及其配合比计算方法[J]. 湖南大学学报: 自然科学版, 2009, 36 (2): 13- 17
ZHENG Wen-zhong, LI Li The preparation of reactive powder concrete and the calculation method of its mixing ratio[J]. Journal of Hunan University: Natural Science Edition, 2009, 36 (2): 13- 17
[5]   SULEIMAN M T, VANDE V T, SRITHARAN S Behavior of driven ultrahigh-performance concrete H-piles subjected to vertical and lateral loadings[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136 (10): 1403- 1413
doi: 10.1061/(ASCE)GT.1943-5606.0000350
[6]   NGO T, MENDIS P, KRAUTHAMMER T Behavior of ultrahigh-strength prestressed concrete panels subjected to blast loading[J]. Journal of Structural Engineering, 2007, 133 (11): 1582- 1590
doi: 10.1061/(ASCE)0733-9445(2007)133:11(1582)
[7]   HOU X, CAO S, ZHENG W, et al Experimental study on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates[J]. Engineering Structures, 2018, 169: 119- 130
doi: 10.1016/j.engstruct.2018.05.036
[8]   王勇华, 梁小燕, 王正道, 等 活性粉末混凝土冲击压缩性能实验研究[J]. 工程力学, 2008, (11): 167- 172
WANG Yong-hua, LIANG Xiao-yan, WANG Zheng-dao, et al Experimental study on impact compression properties of reactive powder concrete[J]. Engineering Mechanics, 2008, (11): 167- 172
[9]   黄政宇, 王艳, 肖岩, 等 应用SHPB试验对活性粉末混凝土动力性能的研究[J]. 湘潭大学自然科学学报, 2006, (2): 113- 117
HUANG Zheng-yu, WANG Yan, XIAO Yan, et al Research on dynamic performance of reactive powder concrete by SHPB test[J]. Journal of Natural Science of Xiangtan University, 2006, (2): 113- 117
doi: 10.3969/j.issn.1000-5900.2006.02.025
[10]   任兴涛, 周听清, 钟方平, 等 钢纤维活性粉末混凝土的动态力学性能[J]. 爆炸与冲击, 2011, 31 (5): 540- 547
REN Xing-tao, ZHOU Ting-qing, ZHONG Fang-ping, et al Dynamic mechanical properties of steel fiber activated powder concrete[J]. Explosion and Shock, 2011, 31 (5): 540- 547
[11]   赖建中, 孙伟, 戎志丹 活性粉末混凝土在多次冲击荷载下的力学行为[J]. 爆炸与冲击, 2008, 28 (6): 532- 538
LAI Jian-zhong, SUN Wei, RONG Zhi-dan Mechanical behavior of reactive powder concrete under multiple impact loads[J]. Explosion and Impact, 2008, 28 (6): 532- 538
doi: 10.3321/j.issn:1001-1455.2008.06.009
[12]   YAZ?C? H, YARD?MC? M Y, YI?ITER H, et al Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag[J]. Cement and Concrete Composites, 2010, 32 (8): 639- 648
doi: 10.1016/j.cemconcomp.2010.07.005
[13]   何晓雁, 秦立达, 张淑艳, 等 基于正交理论的玄武岩纤维活性粉末混凝土配合比设计[J]. 硅酸盐通报, 2016, 35 (5): 1402- 1406
HE Xiao-yan, QIN Li-da, ZHANG Shu-yan, et al Mix design of basalt fiber reactive powder concrete based on orthogonal theory[J]. Bulletin of Silicates, 2016, 35 (5): 1402- 1406
[14]   龙广成, 陈瑜 RPC200的强度及收缩影响研究[J]. 工业建筑, 2002, (6): 4- 7
LONG Guang-cheng, CHEN Yu Study on the effect of factors on strength and shrinkage of RPC200[J]. Industrial Buildings, 2002, (6): 4- 7
doi: 10.3321/j.issn:1000-8993.2002.06.002
[15]   林清, 吴炎海, 姚良云 钢纤维活性粉末混凝土受压性能试验研究[J]. 福建建筑, 2005, (3): 95- 98
LIN Qing, WU Yan-hai, YAO Liang-yun Experimental research on compressive properties of steel fiber RPC[J]. Fujian Architecture, 2005, (3): 95- 98
[16]   孙蓓, 焦楚杰 自然养护活性粉末混凝土单轴受压的试验研究[J]. 工业建筑, 2019, 49 (2): 114- 118
SUN Bei, JIAO Chu-jie Experimental study on uniaxial compression of natural curing active powder concrete[J]. Industrial Construction, 2019, 49 (2): 114- 118
[17]   胡曙光, 彭艳周, 陈凯, 等 掺钢渣活性粉末混凝土的制备及其变形性能[J]. 武汉理工大学学报, 2009, 31 (1): 26- 29
HU Shu-guang, PENG Yan-zhou, CHEN Kai Preparation and deformation performance of reactive powder concrete (RPC) with steel slag powder[J]. Journal of Wuhan University of Technology, 2009, 31 (1): 26- 29
doi: 10.3963/j.issn.1671-4431.2009.01.008
[18]   KAI M, XIAO Y, SHUAI X L, et al Compressive behavior of engineered cementitious composites under high strain-rate loading[J]. Journal of Materials in Civil Engineering, 2016, 29 (4): 4016254
[19]   CHEN Z, YANG Y, YAO Y Quasi-static and dynamic compressive mechanical properties of engineered cementitious composite incorporating ground granulated blast furnace slag[J]. Materials and Design, 2013, 44: 500- 508
doi: 10.1016/j.matdes.2012.08.037
[20]   CHEN X, GE L, ZHOU J, et al Experimental study on split hopkinson pressure bar pulse-shaping techniques for concrete[J]. Journal of Materials in Civil Engineering, 2015, 4015196
[21]   CAO S, HOU X, RONG Q, et al Effect of specimen size on dynamic compressive properties of fiber-reinforced reactive powder concrete at high strain rates[J]. Construction and Building Materials, 2019, 194: 71- 82
doi: 10.1016/j.conbuildmat.2018.11.024
[22]   王立闻, 庞宝君, 盖秉政, 等 活性粉末混凝土高温后冲击压缩特性研究[J]. 工程力学, 2012, 29 (9): 245- 251
WANG Li-wen, PANG Bao-jun, GAI Bing-zheng, et al Research on impact compression properties of reactive powder concrete after high temperature[J]. Engineering Mechanics, 2012, 29 (9): 245- 251
doi: 10.6052/j.issn.1000-4750.2010.12.0938
[23]   TAI Y Uniaxial compression tests at various loading rates for reactive powder concrete[J]. Theoretical and Applied Fracture Mechanics, 2009, 52 (1): 14- 21
doi: 10.1016/j.tafmec.2009.06.001
[24]   王勇华. 活性粉末混凝土冲击压缩性能研究[D]. 北京: 北京交通大学, 2008.
WANG Yong-hua. Research on impact compression properties of reactive powder concrete [D]. Beijing: Beijing Jiaotong University, 2008.
[25]   WANG W, HU Y, REN X, et al. Experimental investigation on dynamic mechanical performances of granite [C]// International Society for Rock Mechanics and Rock Engineering, 2011.
[26]   DONG S, HAN B, OU J, et al Electrically conductive behaviors and mechanisms of short-cut super-fine stainless wire reinforced reactive powder concrete[J]. Cement and Concrete Composites, 2016, 72: 48- 65
doi: 10.1016/j.cemconcomp.2016.05.022
[27]   JIAO C, SUN W Impact resistance of reactive powder concrete[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2015, 30 (4): 752- 757
doi: 10.1007/s11595-015-1223-5
[28]   JIAO C, SUN W, HUAN S, et al Behavior of steel fiber-reinforced high-strength concrete at medium strain rate[J]. Frontiers of Architecture and Civil Engineering in China, 2009, 3 (2): 131- 136
doi: 10.1007/s11709-009-0027-0
[29]   ZHANG W, ZHANG Y, ZHANG G Single and multiple dynamic impacts behaviour of ultra-high performance cementitious composite[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2011, 26 (6): 1227- 1234
doi: 10.1007/s11595-011-0395-x
[30]   LAI J, SUN W Dynamic behaviour and visco-elastic damage model of ultra-high performance cementitious composite[J]. Cement and Concrete Research, 2009, 39 (11): 1044- 1051
doi: 10.1016/j.cemconres.2009.07.012
[31]   张华, 郜余伟, 李飞, 等 高应变率下聚丙烯纤维混凝土动态力学性能和本构模型[J]. 中南大学学报: 自然科学版, 2013, 44 (8): 3464- 3473
ZHANG Hua, GAO Yu-wei, LI Fei, et al Dynamic mechanical properties and constitutive model of polypropylene fiber concrete under high strain rate[J]. Journal of Central South University: Natural Science Edition, 2013, 44 (8): 3464- 3473
[32]   朱兆祥, 徐大本, 王礼立 环氧树脂在高应变率下的热黏弹性本构方程和时温等效性[J]. 宁波大学学报: 理工版, 1988, (1): 58- 68
ZHU Zhao-xiang, XU Da-ben, WANG Li-li Thermoviscoelastic constitutive equation and time-temperature equivalence of epoxy resin at high strain rate[J]. Journal of Ningbo University: Science and Technology Edition, 1988, (1): 58- 68
[33]   WANG Z, LIU Y, SHEN R Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression[J]. Construction and Building Materials, 2008, 22 (5): 811- 819
doi: 10.1016/j.conbuildmat.2007.01.005
[34]   ZHANG H, LIU Y, SUN H, et al Transient dynamic behavior of polypropylene fiber reinforced mortar under compressive impact loading[J]. Construction and Building Materials, 2016, 111: 30- 42
doi: 10.1016/j.conbuildmat.2016.02.049
[35]   李夕兵, 王世鸣, 宫凤强, 等 不同龄期混凝土多次冲击损伤特性试验研究[J]. 岩石力学与工程学报, 2012, 31 (12): 2465- 2472
LI Xi-bing, WANG Shi-ming, GONG Feng-qiang, et al Experimental study on multiple impact damage characteristics of concrete of different ages[J]. Journal of Rock Mechanics and Engineering, 2012, 31 (12): 2465- 2472
doi: 10.3969/j.issn.1000-6915.2012.12.010
[36]   ZHANG H, WANG B, XIE A, et al Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete[J]. Construction and Building Materials, 2017, 152: 154- 167
doi: 10.1016/j.conbuildmat.2017.06.177
[37]   DONG S, HAN B, YU X, et al Dynamic impact behaviors and constitutive model of super-fine stainless wire reinforced reactive powder concrete[J]. Construction and Building Materials, 2018, 184: 602- 616
doi: 10.1016/j.conbuildmat.2018.07.027
[38]   吴政, 张承娟 单向荷载作用下岩石损伤模型及其力学特性研究[J]. 岩石力学与工程学报, 1996, (1): 55- 61
WU Zheng, ZHANG Cheng-juan Research on rock damage model and its mechanical properties under unidirectional load[J]. Journal of Rock Mechanics and Engineering, 1996, (1): 55- 61
doi: 10.3321/j.issn:1000-6915.1996.01.008
[1] XIONG Hai Bei, CAO Ji Xing, ZHANG Feng Liang. Displacement monitoring method for frame tube structure with strengthened stories[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1752-1760.
[2] XIONG Hai bei, LI Ben ben, JIANG Jia fei. Applicability of stress strain model for FRP confined concrete cylinders[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2363-2375.