Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (6): 1194-1201    DOI: 10.3785/j.issn.1008-973X.2020.06.017
Traf fic Engineering     
Cracking of continuously reinforced concrete pavement based on large-scale model test
Ya-ting ZHANG1(),Roesler Jeffery2
1. School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
2. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA
Download: HTML     PDF(1418KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A large-scale model, continuously reinforced concrete beam (CRCB), was built to analyze the sensitivity of the transverse crack properties for variations in concrete material, reinforcement ratio and the use of macro fibers and active crack control, in order to control the transverse cracks in continuously reinforced concrete pavement (CRCP). An analytical method to calculate crack spacing and width was established to quantify the impact of the parameters. Results show that the analytical results are consistent with the field measured results, indicating the feasibility of the proposed analytical model. Transverse cracks developed with time and became stable after approximately 19-month construction. Steel content has significant effect on transverse cracks with approximately 17% reduction in both crack spacing and width in the test beam using #7 bar with diameter of 22.23 mm, compared to the test beam with #6 bar of 19.05 mm diameter. Lightweight concrete has potential to reduce punchout since it produces higher crack spacing and smaller crack width. With fibers and active crack control, the test beam shows larger crack spacing and less crack width.



Key wordscontinuously reinforced concrete pavement (CRCP)      large-scale model test      transverse crack spacing      transverse crack width      analytical model     
Received: 11 January 2020      Published: 06 July 2020
CLC:  U 416  
Cite this article:

Ya-ting ZHANG,Roesler Jeffery. Cracking of continuously reinforced concrete pavement based on large-scale model test. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1194-1201.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.06.017     OR     http://www.zjujournals.com/eng/Y2020/V54/I6/1194


基于大比尺模型试验的连续配筋混凝土路面开裂研究

为控制连续配筋混凝土路面(CRCP)的横向裂缝,修建大比尺模型-连续配筋混凝土梁(CRCB),分析混凝土材料、配筋率、纤维及横向预切缝对CRCP开裂的影响. 构建解析模型推导横向裂缝间距和宽度的计算表达式,理论量化不同设计参数对CRCP横向裂缝特征的影响. 结果表明:解析结果与现场勘测数据吻合,说明解析法切实可行;横向裂缝随着试验梁龄期增长而发展,且于19个月后趋于稳定;配筋率对裂缝间距和宽度影响较大,采用筋径为22.23 mm(#7号钢筋)的试验梁,其裂缝间距和宽度比采用筋径为19.05 mm(#6号钢筋)的试验梁降低了17%左右;采用轻质混凝土可增大裂缝间距、减小裂缝宽度,为控制冲断提供可能;加入纤维和设置横向预切缝可增大裂缝间距、减小裂缝宽度.


关键词: 连续配筋混凝土路面(CRCP),  大比尺模型试验,  横向裂缝间距,  横向裂缝宽度,  解析模型 
Fig.1 Overview of continuously reinforced concrete beam (CRCB)
工况 混凝土材料 ρ/% 横向预切缝
1A 轻质 0.76
1B 轻质 0.76
1C 普通 0.76
1D 普通 0.76
2A 轻质+纤维 0.56
2B 轻质 0.56
2C 普通 0.56
2D 普通+纤维 0.56
Tab.1 Details for all sections in continuously reinforced concrete beam (CRCB)
Fig.2 Cross section of CRCB
Fig.3 Field condition of CRCB
Fig.4 Transverse crack map after 14-day construction
m
工况 t =14 d t =182 d t =569 d t =917 d
CS CW CS CW CS CW CS CW
1A ? <0.10 1.89 <0.10 1.43 0.11 0.98 0.10
1B 8.23 <0.10 1.37 <0.10 0.94 0.10 0.76 0.10
1C 3.26 <0.10 1.07 <0.10 0.73 0.11 0.70 0.13
1D 2.56 <0.10 1.40 <0.10 0.88 0.11 0.88 0.13
2A 5.39 <0.10 1.77 <0.10 1.22 0.12 1.16 0.13
2B 6.80 <0.10 1.77 <0.10 1.16 0.23 1.25 0.15
2C 3.26 <0.10 1.22 <0.10 0.88 0.14 0.82 0.12
2D 2.65 <0.10 1.28 <0.10 1.10 0.11 1.10 0.11
Tab.2 Average crack spacing and crack width in different beam sections and at different ages
Fig.5 Number of transverse cracks with different beam ages
Fig.6 Analytical model for CRCB
Fig.7 Force distribution in CRCB
CRCB设计参数 E / GPa Rm / MPa σbc / MPa εsh / 10?6 α / (10?6·°C?1) hc / cm ρ / % kc / (MPa·m?1) ks / (GPa·m?1) ds /mm b / cm Δt / °C
普通混凝土 28.1 3.62 51.52 700 10 26.67 ? 40 ? ? ? 32
轻质混凝土 27.2 3.43 50.9 550 10 26.67 ? 40 ? ? ? 32
普通纤维混凝土 27.9 4.13 52.57 700 10 26.67 ? 40 ? ? ? 32
轻质纤维混凝土 26.4 4.34 48.37 550 10 26.67 ? 40 ? ? ? 32
#6钢筋 210 550 ? ? 9 ? 0.56 ? 50 19.05 18.42 ?
#7钢筋 210 550 ? ? 9 ? 0.76 ? 50 22.23 18.10 ?
Tab.3 Inputs for concrete and steel in the analytical model
Fig.8 Crack spacing and width for virgin concrete with reinforcement ratio of 0.56%
Fig.9 Crack spacing and width for virgin concrete with reinforcement ratio of 0.76%
Fig.10 Crack spacing and width for lightweight concrete with reinforcement ratio of 0.56%
Fig.11 Crack spacing and width for lightweight concrete with reinforcement ratio of 0.76%
Fig.12 Crack spacing and width for fiber reinforced virgin concrete with reinforcement ratio of 0.56%
Fig.13 Crack spacing and width for fiber reinforced lightweight concrete with reinforcement ratio of 0.56%
工况 CS/m CW/mm
测量 解析 测量 解析
普通混凝土 0.88 0.90 0.13 0.84
轻质混凝土 1.04 1.00 0.12 0.77
19.05 mm 筋径 1.08 1.04 0.13 0.88
22.23 mm 筋径 0.83 0.86 0.12 0.73
有纤维 1.13 1.27 0.12 1.03
无纤维 1.03 1.04 0.14 0.88
有预切缝 1.03 ? 0.12 ?
无预切缝 0.88 ? 0.13 ?
Tab.4 Average crack spacing and width given field measurement versus analytical results
[1]   CHEN D H, SCULLION T, NAM B H Characterization of structural conditions for pavement rehabilitations[J]. Construction and Building Materials, 2016, 121: 664- 675
doi: 10.1016/j.conbuildmat.2016.06.077
[2]   OH H J, CHO Y K, KIM S M Experimental evaluation of crack width movement of continuously reinforced concrete pavement under environmental load[J]. Construction and Building Materials, 2017, 137: 85- 95
doi: 10.1016/j.conbuildmat.2017.01.080
[3]   XIN D P, ZOLLINGER D G, JAMES R W One-dimensional model for analysis of CRC pavement growth[J]. Journal of Transportation Engineering-ASCE, 1992, 118 (4): 557- 575
doi: 10.1061/(ASCE)0733-947X(1992)118:4(557)
[4]   YANG G T, BRADFORD M A Thermal-induced upheaval buckling of concrete pavements incorporating the effects of temperature gradient[J]. Engineering Structures, 2018, 164: 316- 324
doi: 10.1016/j.engstruct.2018.02.002
[5]   ZHANG Y T, ROESLER J R, HUANG Z Y. A method for evaluating CRCP performance based on edge-loaded FWD test [J]. Materials and Structures, 2020, 53(2): 46–1–15.
[6]   张雅婷, ROELSER J, 黄志义. 基于FWD和温度梯度的CRCP反演方法修正及应用[J]. 东南大学学报: 自然科学版, 2018. 48(4): 706–712.
ZHANG Ya-ting, Jeffery Roesler, HUANG Zhi-yi. Improved FWD backcalculation procedure for CRCP with temperature gradient[J]. Journal of Southeast University: Natural Science Edition, 2018, 48(4): 706–712.
[7]   陈亮亮, 田波, 权磊, 等 基于人工神经网络方法的CRCP板顶拉应力影响因素敏感性分析[J]. 公路交通科技, 2015, 32 (5): 43- 48
CHEN Liang-liang, TIAN Bo, QUAN Lei, et al Analysis on sensitibity of influencing factor of tensile stress on top of CRCP slab based on artificial neural network[J]. Journal of Highway and Transportation Research and Development, 2015, 32 (5): 43- 48
doi: 10.3969/j.issn.1002-0268.2015.05.008
[8]   CHOI S, NA B U, WON M C Mesoscale analysis of continuously reinforced concrete pavement behavior subjected to environmental loading[J]. Construction and Building Materials, 2016, 112: 447- 456
doi: 10.1016/j.conbuildmat.2016.02.222
[9]   葛倩如, 黄志义, 王金昌, 等 BFRP连续配筋复合式路面配筋设计[J]. 浙江大学学报: 工学版, 2015, 49 (1): 186- 192
GE Qian-ru, HUANG Zhi-yi, WANG Jin-chang, et al Reinforcement design of composite pavement continuously reinforced with basalt fiber reinforced plastics bars[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (1): 186- 192
[10]   LOPEZ M, KAHN L F, KURTIS K E High-strength self-curing low-shrinkage concrete for pavement applications[J]. International Journal of Pavement Engineering, 2010, 11 (5): 333- 342
doi: 10.1080/10298436.2010.488731
[11]   陈瑜, 邓怡帆, 唐旗, 等 预湿轻骨料内养护功能及其对混凝土的影响[J]. 长沙理工大学学报: 自然科学版, 2015, 12 (3): 1- 6
CHEN Yu, DENG Yi-fan, TANG Qi, et al Internal curing function of pre-wetted lightweight aggregates and its influences on concrete[J]. Journal of Changsha University of Science and Technology: Natural Science, 2015, 12 (3): 1- 6
[12]   RONALD F Z Fiber-reinforced concrete: an overview after 30 years of development[J]. Cement and Concrete Composites, 1997, (19): 107- 122
[13]   刘贺, 付智, 刘奕含 路面纤维混凝土韧性试验研究[J]. 中国公路学报, 2012, 25 (2): 33- 39
LIU He, FU Zhi, LIU Yi-han Study of the toughness of fiber reinforced concrete pavement in laboratory[J]. China Journal of Highway and Transport, 2012, 25 (2): 33- 39
doi: 10.3969/j.issn.1001-7372.2012.02.006
[14]   MCGHEE K H Experience with continuously reinforced concrete pavements in Virginia[J]. Transportation Research Record: Journal of the Transportation Research Board, 1974, 485: 14- 24
[15]   RASMUSSEN R O, ROZYCKI D K Characterization and modeling of axial slab-support restraint[J]. Transportation Research Record: Journal of the Transportation Research Board, 2001, 1778: 26- 32
doi: 10.3141/1778-04
[16]   曹东伟, 胡长顺 连续配筋混凝土路面温度应力分析[J]. 西安公路交通大学学报, 2001, 21 (2): 1- 4
CAO Dong-wei, HU Chang-shun Analysis of the thermal stress for continuously reinforced concrete pavement[J]. Journal of Xi’an Highway University, 2001, 21 (2): 1- 4
[17]   白桃, 黄晓明 均匀温降下连续配筋混凝土路面(CRCP)受力分析[J]. 武汉理工大学学报, 2010, 32 (7): 55- 59
BAI Tao, HUANG Xiao-ming Mechanics analysis of CRCP under uniform temperature drop condition[J]. Journal of Wuhan University of Technology, 2010, 32 (7): 55- 59
doi: 10.3963/j.issn.1671-4431.2010.07.015
[18]   SELEZNEVA O, DARTER M, ZOLLINGER D, SHOUKRY S Characterization of transverse cracking spatial variability: Use of long-term pavement performance data for continuously reinforced concrete pavement design[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003, 1849: 147- 155
doi: 10.3141/1849-16
[1] ZHONG Yun-long, WU Li-jian, HUANG Xiao-yan, FANG You-tong. Nonlinear analytical model of heteropolar radial magnetic bearing[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 193-199.
[2] REN Song, OUYANG Xun, WU Jian-xun, CHEN Fan, WANG Liang, CHEN Jie. Elastic-swelling analytical model of anhydrite rock considering time-dependent effect[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 896-905.
[3] WANG Zi-yang, SHAO Wei-yun, ZHANG Yi-ping. Cylindrical surface model of ground source heat pump considering soil stratification[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1338-1345.
[4] MENG Bao, HUANG Peng-jie, XIE Bo, et al. Analytical modeling for pulsed eddy current testing[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(09): 1621-1624.