Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (6): 1058-1067    DOI: 10.3785/j.issn.1008-973X.2020.06.002
Civil Engineering     
Computational method of punching-shear capacity of concrete slabs reinforced with FRP bars
Xing-lang FAN1(),Sheng-jie GU1,Jia-fei JIANG2,Xi WU3
1. College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2. College of Civil Engineering, Tongji University, Shanghai 200092, China
3. College of Engineering, Zhejiang University City College, Hangzhou 310015, China
Download: HTML     PDF(1115KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A punching-shear capacity model for concrete slabs reinforced with fiber-reinforced polymer (FRP) bars was proposed based on critical shear crack theory. The moment-curvature relationship of FRP concrete slabs was established by a sectional analysis method, in which the tensile stress-strain relationship of concrete was incorporated with the tension stiffening effect. The demanding curve of FRP concrete slabs was determined by a simplified deformation of concrete slabs, the moment-curvature relationship of FRP concrete slabs, and the equilibrium equations of slabs. The validity of the model was verified with experimental results collected from the literature. At the same time, the accuracy of existing punching-shear models of FRP concrete slabs was compared and evaluated. The parametric analysis results indicate that the nominal punching shear stress in slabs increases but the critical rotation angle of slabs decreases with the increase of FRP reinforcement ratio and effective depth. As the strength of concrete and the loading area increase, the nominal punching shear stress in slabs decreases but the critical rotation angle of slabs increases. The effect of slab thickness and reinforcing ratio on the durability of concrete slabs should be considered in the design of slabs.



Key wordscritical shear crack theory (CSCT)      strip method      fiber-reinforced polymer (FRP) bars      concrete slabs      punching shear capacity     
Received: 08 May 2019      Published: 06 July 2020
CLC:  TU 375.2  
Cite this article:

Xing-lang FAN,Sheng-jie GU,Jia-fei JIANG,Xi WU. Computational method of punching-shear capacity of concrete slabs reinforced with FRP bars. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1058-1067.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.06.002     OR     http://www.zjujournals.com/eng/Y2020/V54/I6/1058


FRP筋混凝土板冲切承载力计算方法

基于临界剪切裂缝理论,提出FRP筋混凝土板冲切承载力的计算方法. 该方法考虑拉伸刚化效应的混凝土拉伸应力-应变关系,利用截面分析法确定FRP筋受弯构件的弯矩-曲率关系. 根据混凝土板的变形假定、弯矩-曲率关系以及板的平衡方程,确定FRP筋混凝土板的需求曲线. 收集文献中试验数据对该计算方法进行验证,并将其与其他计算模型进行比较分析. 参数分析结果表明:随着混凝土强度与柱头尺寸的增加,FRP筋板承载力名义应力相应降低,混凝土板的延性呈现增长趋势;随着配筋率与厚度的增加,板冲切承载力的名义应力增大,配筋率与厚度的增加会导致板延性降低,因此在设计中应充分考虑板厚与配筋率对FRP筋混凝土板延性的影响.


关键词: 临界剪切裂缝理论(CSCT),  条带法,  纤维增强复合材料(FRP)筋,  混凝土板,  冲切承载力 
Fig.1 Relation ship of punching shear force-rotation angle of FRP-RC slabs
Fig.2 Diagram of critical shear crack development
Fig.3 Distribution of forces in concrete and in FRP bars and resultant forces acting on slab sector
Fig.4 Assumed distribution of radial and tangential curvature in FRP-RC slabs
Fig.5 Calculation flow chart of punching-shear capacity of FRP-RC slabs
Fig.6 Calculation flow chart of moment-curvature relationship of FRP-RC flexural members
Fig.7 Comparison of theoretical and experimental values of punching shear capacity
文献 试件 L/mm c/mm h/mm d/mm ${f_{\rm c}}^\prime /{\rm{MPa}}$ ${\rho _{\rm f}}/{\text{%}}$ FRP类型 ${f_{\rm{fu}}}/{\rm{MPa}}$ ${E_{\rm f}}/{\rm{GPa}}$
[2] 500 100 75 55 41 0.31 CFRP筋 517 100
500 100 75 55 52.9 0.31 CFRP筋 517 100
[3] C1 900 150 120 96 36.7 0.27 CFRP筋 1 690 91.8
C1' 900 230 120 96 37.3 0.27 CFRP筋 1 690 91.8
C2 900 150 120 95 35.7 1.05 CFRP筋 1 340 95
C2' 900 230 120 95 36.3 1.05 CFRP筋 1 340 95
C3 900 150 150 126 33.8 0.52 CFRP筋 1 350 92
C3' 900 230 150 126 34.3 0.52 CFRP筋 1 350 92
CS 900 150 120 95 32.6 0.19 GFRP筋 2 300 147
CS' 900 150 120 95 33.2 0.19 GFRP筋 2 300 147
H1 900 150 120 95 118 0.62 混合筋 665 37.3
H2 900 150 120 89 35.8 3.76 混合筋 555 40.7
H2' 900 80 120 89 35.9 3.76 混合筋 555 40.7
H3 900 150 150 122 32.1 1.22 混合筋 640 44.8
H3' 900 80 150 122 32.1 1.22 混合筋 640 44.8
[5] GFR1 1 670 250 155 120 29.5 0.73 GFRP筋 663 34
GFR2 1 670 250 155 120 28.9 1.46 GFRP筋 663 34
NEF1 1 670 250 155 120 37.5 0.87 GFRP筋 566 28.4
[9] GSL-0.4 2 000 200 150 129 39 0.48 GFRP筋 582 48
GSL-0.6 2 000 200 150 129 39 0.68 GFRP筋 582 48
GSL-0.8 2 000 200 150 129 39 0.92 GFRP筋 582 48
[23] G(0.7)30/20 2 000 300 200 150 34.3 0.71 GFRP筋 769 48.2
G(1.6)30/20 2 000 300 200 150 38.6 1.56 GFRP筋 765 48.1
G(0.7)45/20 2 000 450 200 150 44.9 0.71 GFRP筋 769 48.2
G(1.6)45/20 2 000 450 200 150 32.4 1.56 GFRP筋 765 48.1
G(0.3)30/35 2 000 300 350 300 34.3 0.34 GFRP筋 769 48.2
G(0.7)30/35 2 000 300 350 300 39.4 0.73 GFRP筋 765 48.1
G(0.3)45/35 2 000 450 350 300 48.6 0.34 GFRP筋 769 48.2
G(0.7)45/35 2 000 450 350 300 29.6 0.73 GFRP筋 769 48.2
G(1.6)30/20-H 2 000 300 200 131 75.8 1.56 GFRP筋 1 109 57.4
G(1.2)30/20 2 000 300 200 131 37.5 1.21 GFRP筋 1 334 64.9
G(1.6)30/35 2 000 300 350 275 38.2 1.61 GFRP筋 1 065 56.7
G(1.6)30/35-H 2 000 300 350 275 75.8 1.61 GFRP筋 1 065 56.7
[8] GFU1 2 000 225 150 110 36.3 1.18 GFRP筋 761 48.2
GFB2 2 000 225 150 110 36.3 1.1 GFRP筋 761 48.2
GFB3 2 000 225 150 110 36.3 1.26 GFRP筋 761 48.2
[6] SG1 1 700 200 175 142 32 0.18 GFRP筋 800 45
SC1 1 700 200 175 142 32.8 0.15 GFRP筋 1 400 110
SG2 1 700 200 175 142 46.4 0.38 GFRP筋 800 45
SG3 1 700 200 175 142 30.4 0.38 GFRP筋 800 45
SC2 1 700 200 175 142 29.6 0.35 GFRP筋 1 400 110
[24] G-0.65-N-00XX 2 800 300 200 159 38 0.65 GFRP筋 1 398 68
Tab.A1 Geometric and material parameters of tested FRP-RC slabs
Fig.8 Effect of different parameters on FRP-RC slabs
[1]   BROOMFIELD P J. Corrosion of steel in concrete: Understanding, investigation and repair[M]. 2nd edition. Swiss: CRC Press, 2003.
[2]   BANTHIA N, TROTTIER J F Test methods for flexural toughness characterization of fiber reinforced concrete: some concerns and a proposition[J]. ACI Materials Journal, 1995, 92 (1): 48- 57
[3]   MATTHYS S, TAERWE L Concrete slabs reinforced with FRP grids. II: Punching resistance[J]. Journal of Composites for Construction, 2000, 4 (3): 154- 161
doi: 10.1061/(ASCE)1090-0268(2000)4:3(154)
[4]   GARDER N J Relationship of the punching shear capacity of reinforced concrete slabs with concrete strength[J]. ACI Structural Journal, 1990, 87 (1): 66- 71
[5]   OSPINA C E, ALEXANDER S, CHENG J Punching of two-way concrete slabs with fiber-reinforced polymer reinforcing bars or grids[J]. ACI Structural Journal, 2003, 100 (5): 589- 598
[6]   El-GHANDOUR A W, PILAKOUTAS K, WALDRON P Punching shear behavior of fiber reinforced polymers reinforced concrete flat slabs: Experimental Study[J]. Journal of Composites for Construction, 2003, 7 (3): 258- 265
doi: 10.1061/(ASCE)1090-0268(2003)7:3(258)
[7]   THEODORAKOPOULOS D D, SWAMY R N A design model for punching shear of FRP-reinforced slab-column connections[J]. Cement and Concrete Composites, 2008, 30 (6): 544- 555
doi: 10.1016/j.cemconcomp.2007.10.003
[8]   LEE J H, YOON Y S, COOK W D, et al Improving punching shear behavior of glass fiber-reinforced polymer reinforced slabs[J]. ACI Structural Journal, 2009, 106 (4): 427- 434
[9]   NGUYEN M L, ROVNAK M Punching shear resistance of interior GFRP reinforced slab-column connections[J]. Journal of Composites for Construction, 2012, 17 (1): 2- 13
[10]   郑愚, 陆中宇. GFRP筋混凝土桥面板冲切承载力研究[J]. 工业建筑, 2013(增刊): 138-143.
ZHENG Yu, LU Zhong-yu. Study of punching capacity in GFRP reinforced concrete bridge deck slabs[J]. Industrial Construction, 2013(Suppl.),: 138-143.
[11]   朱海棠, 王怡中, 李金章 BFRP筋混凝土双向板冲切承载力塑性分析[J]. 郑州大学学报: 工学版, 2012, 33 (4): 1- 4
ZHU Hai-tang, WANG Yi-zhong LI Plastic analysis of punching capacity of BFRP reinforced concrete two-way slab[J]. Journal of Zhengzhou University: Engineering Science, 2012, 33 (4): 1- 4
[12]   MUTTONI A Punching Shear Strength of Reinforced Concrete Slabs without Transverse Reinforcement[J]. ACI Structural Journal, 2008, 105 (4): 440- 450
[13]   MUTTONI A Shear and punching strength of slabs without shear reinforcement[J]. Beton-und Stahlbetonbau, 2003, 98 (2): 74- 84
doi: 10.1002/best.200300400
[14]   WALRAVEN J C Fundamental analysis of aggregate interlock[J]. Journal of the Structural Division, 1981, 107 (11): 2245- 2270
[15]   VECCHIO F J, COLLINS M P The modified compression-field theory for reinforced concrete elements subjected to shear[J]. ACI Journal Proceedings, 1986, 83 (2): 219- 231
[16]   KINNUNEN S, NYLANDER H. Punching of concrete slabs without shear reinforcement [M]. Stockholm: Elander, 1960.
[17]   顾祥林, 孙飞飞. 混凝土结构计算机仿真[M]. 1版. 上海: 同济大学出版社, 2002.
[18]   NAYAL R, RASHEED H A Tension stiffening model for concrete beams reinforced with steel and FRP bars[J]. Journal of Materials in Civil Engineering, 2006, 18 (6): 831- 841
doi: 10.1061/(ASCE)0899-1561(2006)18:6(831)
[19]   ACI Committee 440, Guide for the Design and Construction of Concrete Reinforced with FRP Bars (ACI 440.1R-15)[S]. Farmington Hills, MI, USA: American Concrete Institute, 2015.
[20]   Japan Society of Civil Engineers. Recommendation for design and construction of concrete structures using continuous fiber rein-forcing materials [S]. Tokyo: Japan Society of Civil Engineers, 1997.
[21]   CAN/CSA S806-12 Committee. Design and Construction of Building Structures with Fiber-Reinforced Polymers [S]. Mississauga: Canadian Standards Association, 2012.
[22]   El-GAMAL S, El-SAKALAWY E, BENMOKRANE B Behavior of concrete bridge deck slabs reinforced with fiber reinforced polymer bars under concentrated loads[J]. ACI Structural Journal, 2005, 102 (5): 727- 735
[23]   HASSAN M, AHMED E, BENMOKRANE B Punching-shear strength of normal and high-strength two-way concrete slabs reinforced with GFRP bars[J]. Journal of Composites for Construction, 2013, 17 (6): 04013003
doi: 10.1061/(ASCE)CC.1943-5614.0000424
[1] Hong-wei YING,Kang CHNEG,Jian-lin YU,Ri-qing XU,Zhi-jian QIU,Xiao-bo ZHAN,Jian-she QIN,Chun-hui LOU. Prediction of shield tunnel displacement due to adjacent basement excavation considering continuous deformation of ground[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 318-329.