Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (6): 1068-1077    DOI: 10.3785/j.issn.1008-973X.2020.06.003
Civil Engineering     
Modal stiffness method for seismic response analysis of latticed shells
Yang QU1,2(),Yong-feng LUO1,*(),Zhao-chen ZHU1,Qing-long HUANG1
1. College of Civil Engineering, Tongji University, Shanghai 200092, China
2. The Third Construction Co. Ltd of China Construction Eighth Engineering Division, Nanjing 210046, China
Download: HTML     PDF(2807KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The modal stiffness was proposed; the relationship between the modal stiffness and the modal dynamic property was derived and built. Based on the modal stiffness, the nonlinear capacity curve was depicted via the pushover analysis, which could consider the overall responses instead of relying on specific node and characteristic response. In order to overcome the drawback of unequal energy dissipation within the bi-linearized model, an equivalent linearized iterative approach combined with seismic response spectrum was presented to improve the solving accuracy of target displacement of the structure. Thus, the modal stiffness pushover analysis (MSPA) method was established. The seismic responses of a spherical latticed shell and a cylindrical latticed shell were calculated by means of response history analysis (RHA), conventional modal pushover analysis (MPA), and MSPA methods. Results demonstrate that the nodal displacements, element stresses, as well as the quantities of yielding members can be predicted precisely by MSPA method, and the time consumption is greatly reduced.



Key wordslatticed shell      modal stiffness      pushover analysis      seismic response estimation     
Received: 20 May 2019      Published: 06 July 2020
CLC:  TU 393.3  
Corresponding Authors: Yong-feng LUO     E-mail: quyang_phd@tongji.edu.cn;yfluo93@tongji.edu.cn
Cite this article:

Yang QU,Yong-feng LUO,Zhao-chen ZHU,Qing-long HUANG. Modal stiffness method for seismic response analysis of latticed shells. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1068-1077.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.06.003     OR     http://www.zjujournals.com/eng/Y2020/V54/I6/1068


网壳结构地震反应分析的振型刚度法

提出振型刚度的概念,通过理论推导,建立振型刚度与结构振型特性之间的关系. 基于振型刚度,通过推覆分析构建非线性能力曲线,该曲线能够考虑结构整体响应而非依赖于特定节点和特征响应. 提出等效线性化迭代方法,结合地震反应谱,克服双线性模型实际耗能不一致的缺点,快速提高目标位移的求解精度. 在此基础上,建立网壳结构地震反应分析振型刚度法(MSPA). 采用时程分析法(RHA)、传统推覆法(MPA)和振型刚度法(MSPA)计算球面网壳和柱面网壳算例的地震响应,研究结果表明:振型刚度法能较准确地预测结构节点位移、单元应力以及屈服杆件个数,计算精度满足工程要求,大大缩减了计算耗时.


关键词: 网壳结构,  振型刚度,  推覆分析,  地震反应评估 
Fig.1 Bilinear simplified model of capacity curve
Fig.2 Equivalent linearized iteration model of capacity curve
Fig.3 Structural layout of latticed shells
Fig.4 Dominant modes of latticed shells
Fig.5 Capacity curves of latticed shells
Fig.6 Seismic wave pseudo-acceleration response spectrum
Fig.7 Comparison of nodal displacements of spherical latticed shell calculated by response history analysis and (RHA) modal stiffness pushover analysis (MSPA) methods
Fig.8 Comparison of nodal displacements of cylindrical latticed shell calculated by RHA and MSPA methods
Fig.9 Comparison of maximum displacements of latticed shells
Fig.10 Comparison of element stresses of spherical latticed shell calculated by RHA and MSPA methods
Fig.11 Comparison of element stresses of cylindrical latticed shell calculated by RHA and MSPA methods
Fig.12 Comparison for numbers of yielding members of latticed shells
[1]   曲扬, 罗永峰, 朱钊辰, 等 空间网格结构多维地震反应分析方法研究现状[J]. 建筑钢结构进展, 2020, 22 (1): 8- 18
QU Yang, LUO Yong-feng, ZHU Zhao-chen, et al State of the art of multi-dimensional seismic analysis techniques for spatial reticulated structures[J]. Progress in Steel Building Structures, 2020, 22 (1): 8- 18
[2]   POURSHA M, KHOSHNOUDIAN F, MOGHADAM A S A consecutive modal pushover procedure for estimating the seismic demands of tall buildings[J]. Engineering Structures, 2009, 31: 591- 599
doi: 10.1016/j.engstruct.2008.10.009
[3]   XIANG Y, LUO Y F, SHEN Z Y An extended modal pushover procedure for estimating the in-plane seismic responses of latticed arches[J]. Soil Dynamics and Earthquake Engineering, 2017, 93: 42- 60
doi: 10.1016/j.soildyn.2016.12.005
[4]   相阳, 罗永峰, 郭小农, 等 空间结构弹塑性地震反应分析的简化模型与方法[J]. 东南大学学报:自然科学版, 2015, 45 (4): 750- 755
XIANG Yang, LUO Yong-feng, GUO Xiao-nong, et al Simplified model and procedure for elasto-plastic seismic response analysis of spatial structure[J]. Journal of Southeast University: Natural Science Edition, 2015, 45 (4): 750- 755
[5]   OHSAKI M, ZHANG J Y Prediction of inelastic seismic responses of arch-type long-span structures using a series of multimodal pushover analyses[J]. Journal of the International Association for Shell and Spatial Structures, 2013, 54 (175): 27- 37
[6]   ZHU Z C, LUO Y F, XIANG Y Global stability analysis of spatial structures based on eigen-stiffness and structural eigen-curve[J]. Journal of Constructional Steel Research, 2018, 141: 226- 240
doi: 10.1016/j.jcsr.2017.11.003
[7]   曲扬, 罗永峰, 黄青隆, 等 格构拱结构动力响应评估的改进模态推覆分析法[J]. 同济大学学报:自然科学版, 2019, 47 (1): 1- 8
QU Yang, LUO Yong-feng, HUANG Qing-long, et al An improved modal pushover analysis procedure for estimating seismic responses of latticed arch[J]. Journal of Tongji University: Natural Science, 2019, 47 (1): 1- 8
[8]   CHOPRA A K, GOEL R K A modal pushover analysis procedure for estimating seismic demands for buildings[J]. Earthquake Engineering and Structural Dynamics, 2002, 31 (3): 561- 582
doi: 10.1002/eqe.144
[9]   GOEL RK, CHOPRA AK Evaluation of modal and FEMA pushover analyses: SAC buildings[J]. Earthquake Spectra, 2004, 20 (1): 225- 254
doi: 10.1193/1.1646390
[10]   GENCTURK B, ELNASHAI A S Development and application of an advanced capacity spectrum method[J]. Engineering Structures, 2008, 30: 3345- 3354
doi: 10.1016/j.engstruct.2008.05.008
[11]   杨溥, 李英民, 熊振勇, 等 能力曲线折线简化方法对比研究[J]. 重庆建筑大学学报, 2005, 27 (4): 59- 63
YANG Pu, LI Ying-min, XIONG Zhen-yong, et al Study on the comparison of different methods of simplifying capacity spectrum[J]. Journal of Chongqing Jianzhu University, 2005, 27 (4): 59- 63
[12]   FAJFAR P A nonlinear analysis method for performance-based seismic design[J]. Earthquake Spectra, 2000, 16: 573- 592
doi: 10.1193/1.1586128
[13]   LUO Y F, WANG L, GUO X N Threshold value method and its application in dynamic analysis of spatial latticed structures[J]. Advances in Structural Engineering, 2012, 15: 2215- 2226
doi: 10.1260/1369-4332.15.12.2215
[14]   相阳, 罗永峰, 朱钊辰, 等 基于设计反应谱的空间结构弹塑性地震反应分析方法[J]. 建筑结构学报, 2017, 38 (9): 74- 83
XIANG Yang, LUO Yong-feng, ZHU Zhao-chen, et al A procedure for elasto-plastic seismic response analysis of spatial structures based on design response spectra[J]. Journal of Building Structures, 2017, 38 (9): 74- 83
[1] Yue-dong JIN,Ru-hao WANG,Yang ZHAO. Experiment of six-member basic structure with a pre-embedded-bolt joint for single-layer latticed shells[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2100-2108.
[2] XIANG Yang, LUO Yong feng, LIAO Bing, SHEN Zu yan. Correlation between seismic input and modal response of spherical latticed shell[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1040-1047.
[3] YAO Yun-long,DONG Shi-lin,LIU Hong-chuang,XIA Ju-wei,ZHANG Min-rui,ZU Yi-zhen. Model designing and static experimental study on double inner and outer latticed shell string structure  [J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1129-1139.