Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Civil Engineering, Architectural Engineering     
Correlation between seismic input and modal response of spherical latticed shell
XIANG Yang, LUO Yong feng, LIAO Bing, SHEN Zu yan
1. Department of Building Engineering, Tongji University, Shanghai 200092, China;
2. Shanghai Tongji Construction Quality Inspection Station, Shanghai 200092, China
Download:   PDF(2347KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The dominant modes (DM) of latticed shells was obtained by analyzing the modal response characteristics in accordance with the predetermined earthquake excitation input in the frequency domain, and the efficiency of the modal superposition method (MSM) was improved. The modal response characteristics were obtained by calculating the numerical values of the modal quasistatic response, and the resonant response and the coupled response after their definitions were given. The correlation between the earthquake excitation input and the modal response was studied. The regularities of the  component responses contributing to the overall responses were obtained as well. Numerical examples show that the DM frequencies are controlled by a certain frequency range or several certain frequency ranges in accordance with the predicted excitation input. For the different frequency ranges of the total structural response, the type of the dominant modal response varies. Meanwhile, the procedure of the modified MSM was given, which takes the correlation between the structural responses and the seismic input under certain seismic zonation and site condition into consideration.



Published: 01 June 2016
CLC:  TU 391  
Cite this article:

XIANG Yang, LUO Yong feng, LIAO Bing, SHEN Zu yan. Correlation between seismic input and modal response of spherical latticed shell. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1040-1047.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2016.06.005     OR     http://www.zjujournals.com/eng/Y2016/V50/I6/1040


球面网壳地震动输入与振型响应的相关性

通过分析球面网壳结构对预定地震荷载谱的响应,选出对结构反应贡献较大的主振型(DM)并用于振型叠加计算,提高振型叠加法(MSM)的计算效率.为获得球面网壳在预定地震荷载谱作用下的响应规律以及研究结构振型响应与地震动输入的相关性,基于准静力响应、共振响应及耦合响应的定义,计算结构在预定地震动输入功率谱作用下的位移响应谱、准静力响应谱、共振响应谱及耦合响应谱,得出各响应分量对总响应的贡献规律.结果表明,在预定地震动输入下,球面网壳结构响应主要由某一个或几个特定频率区段的振型响应控制,在不同的频率区段,对总响应贡献最大的响应分量类型不同.给出在预定地震动区划和场地条件下,考虑地震动输入与结构响应相关性的改进振型叠加法的分析流程.

[1] 廖冰,罗永峰,王磊,等.基于质量参与系数的空间结构动力模型简化[J].湖南大学学报:自然科学版, 2013, 40(9): 7-13.
LIAO Bing, LUO Yongfeng, WANG Lei, et al. A new simplified method for the dynamic model of spatial structures based on mass participation factors [J]. Journal of Hunan University: Natural Science, 2013, 40(9): 7-13.
[2] 廖冰,罗永峰.基于振型贡献系数的空间结构振动反应研究[J].空间结构,2014, 20(1): 9-17.
LIAO Bing, LUO Yongfeng. Vibration response computation of spatial structures based on mode contribution factors [J]. Spatial Structures, 2014, 20(1): 9-17.
[3] 中华人民共和国住房和城乡建设部.空间网格结构技术规程:JGJ 72010[S]. 北京: 中国建筑工业出版社, 2010: 2123.
[4] 胡仲淹,罗永峰,王人鹏,等.基于振型遴选与振型构造的空间网格结构动力分析方法[J].工业建筑, 2015, 45(1): 16-22.
HU Zhongyan, LUO Yongfeng, WANG Renpeng, et al. The dynamic analysis of spatial lattice structures based on mode selection and mode construction techniques [J]. Industrial Construction, 2015, 45(1): 16-22.
[5] YIN Y, HUANG X, HAN Q, et al. Study on the accuracy of response spectrum method for longspan reticulated shells [J]. International Journal of Space Structures, 2009, 24(1): 27-35.
[6] 吴雨杭,尹越,刘璐.空间网格结构振型分解反应谱分析合理振型数研究[J].空间结构, 2015, 21(4): 25-31.
WU Yuhang, YIN Yue, LIU Lu. Reasonable mode number required in mode superposition response analysis for space frame structures [J]. Spatial Structures, 2015, 21(4): 25-31.
[7] WILSON E L, YUAN M W, DICKENS J M. Dynamic analysis by direct superposition of Ritz vectors [J]. Earthquake Engineering and Structural Dynamics, 1982, 10(6): 813-821.
[8] GU J, MA Z D, HULBERT G M. A new loaddependent Ritz vector method for structural dynamics analyses: quasistatic Ritz vectors [J]. Finite Elements in Analysis and Design, 2000, 36(3): 261-278.
[9] 王磊,罗永峰.空间网格结构抗震分析中的阈值法理论[J].东南大学学报:自然科学版,2011, 41(3): 636-641.
WANG Lei, LUO Yongfeng. Threshold vaule method in seismic analysis of spatial latticed structures [J]. Journal of Southeast University: Natural Science Edition, 2011, 41(3): 636-641.
[10] LUO Y F, WANG L, GUO X N. Threshold value method and its application in dynamic analysis of spatial latticed structures [J]. Advances in StructuralEngineering, 2012, 15(12): 2215-2226.
[11] 李英民,刘立平.工程结构的设计地震动[M].北京:科学出版社, 2011: 14-15.
[12] DAVENPORT A G. Gust loading factors [J]. Journal of the Structural Division, 1967, 93(3): 11-34.
[13] DAVENPORT A G. How can we simplify and generalize wind loads? [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54: 657-669.
[14] 陈波,武岳,沈世钊.背景响应,共振响应定义及其相关性分析方法[J].振动工程学报, 2008, 21(2): 140-145.
CHEN Bo, WU Yue, SHEN Shizhao. Definitions and correlation analyses for background response and resonant response [J]. Journal of Vibration Engineering, 2008, 21(2): 140-145.
[15] 廖冰.大跨度空间结构主振型遴选与地震作用相关性研究[D].上海: 同济大学, 2014.
LIAO Bing. Dominate vibration mode selection and correlation between the dominate vibration mode and seismic action in largespan spatial structures [D]. Shanghai: Tongji University, 2014.
[16] 俞载道,曹国敖.随机振动理论及其应用[M].上海: 同济大学出版社, 1988: 243-247.
[17] 廖冰,罗永峰.大跨度空间结构地震响应组成分量研究[J].工业建筑, 2015(2): 107-113.
LIAO Bing, LUO Yongfeng. Research on seismic response components of largespan spatial structures [J]. Industrial Construction, 2015(2): 107-113.

[1] YANG Zhang, TONG Gen shu, ZHANG Lei. Effective Rigidity of two one-side stiffeners arranged symmetrically[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1446-1455.
[2] OUYANG Dan dan, FU Bo,TONG Gen shu. Ductility grading of rectangular steel tube section and width thickness ratio correlation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 271-281.
[3] TONG Gen shu, YANG Zhang, ZHANG Lei. Effective rigidity of one side stiffeners in Steel Shear Walls[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(11): 2151-2158.
[4] WANG Jiao-jiao, SHI Yong-jiu, WANG Yuan-qing, PAN Peng, MAKINO Toshio, QI Xue. Experimental study on low yield point steel LYP100 under cyclic loading[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1401-1409.
[5] LU Jin-yu, TANG Yi, SHU Gan-ping, WANG Heng-hua. Hysteretic behavior of steel plate shear wall with slits of unequal length[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1968-1975.
[6] YANG Lian-zhi, ZHANG Liang-liang, YU Lian-ying, SHANG Lan-ge, GAO Yang, WANG Min-zhong. Comparison of solutions from different displacement boundary conditions at fixed end of cantilever beams[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1955-1961.
[7] CHENG Hua-qiang, LUO Yao-zhi, XU Xian. Nonlinear force control of adaptive beam sting structure[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1155-1161.
[8] ZHANG Lei, LUO Gui-fa, TONG Gen-shu. Refined study on lateral-force resistance of dual structural system composed of moment-resisting frame and chevron braces[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(10): 1815-1823.
[9] XIAO Nan, WANG Hai, CHEN Hua-peng, ZHANG Fei-lin. Symptom-based reliability and lifetime prediction for latticed structures under atmospheric corrosion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(8): 1373-1378.
[10] WANG Zhen-yu, ZHANG Jin-fan, FANG Cheng, LIU Guo-hua,JIANG Jian-qun. Study on the component-based model of semi-rigid
beam-to-column joints initial stiffness
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(11): 1998-2006.
[11] ZHANG Lei, TONG Gen-shu. Finite element modelling of thin-walled members
in overall stability analysis
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(3): 531-538.
[12] JIN Yang, TONG Gen-Shu. Elastic buckling of web restrained by flanges in I-section members[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(10): 1883-1891.