Please wait a minute...
J4  2011, Vol. 45 Issue (3): 531-538    DOI: 10.3785/j.issn.1008-973X.2011.03.022
    
Finite element modelling of thin-walled members
in overall stability analysis
ZHANG Lei, TONG Gen-shu
Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In the overall stability analysis of thin-walled members employing the general purpose finite element (FE) softwares, the members are generally modelled using the thin-walled beam elements or the thin shell elements. The modelling details of these two FE models were presented, and a new thin shell element model, capable of prohibiting the local buckling modes in the overall buckling analysis, was proposed. The two types of FE models were then adopted into the buckling analysis of thin-walled members, including the beams and columns with doubly and singly symmetric sections, beamcolumns, tapered beams. The comparisons of the results from FE analyses, analytical solutions and literature show that the proposed thin shell element model is superior to the existing models of this type; the thin-walled beam element of ANSYS is not applicable to the flexural-torsional buckling analysis of thin-walled beams and beam-columns of monosymmetric section, and significant error may arise in buckling analysis of tapered beams using this element. The results from the presented shell element model can also be used as the benchmark results in verifying the buckling theory of thin-walled members. The outcome of this study may be helpful for modelling thin-walled members in overall stability analysis using general FE packages, not limited to ANSYS.



Published: 16 March 2012
CLC:  TU 391  
Cite this article:

ZHANG Lei, TONG Gen-shu. Finite element modelling of thin-walled members
in overall stability analysis. J4, 2011, 45(3): 531-538.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.03.022     OR     http://www.zjujournals.com/eng/Y2011/V45/I3/531


薄壁构件整体稳定性的有限元模拟

对薄壁构件整体稳定性分析中的薄壁梁单元和壳体单元两种有限元模型的特点进行了讨论,并提出一种新的适用于薄壁构件整体稳定分析的壳体单元模型,该模型可以有效消除各种局部屈曲模态的影响.采用通用有限元软件ANSYS,分别利用壳体单元模型和薄壁梁单元模型,分析了双轴对称截面梁、单轴对称截面梁、轴心受压构件、压弯构件和变截面梁的稳定性,通过与经典解或已有研究结果的比较对有限元模型的可靠性以及存在的问题进行了讨论.通过分析,发现ANSYS的薄壁梁单元模型不能用于分析单轴对称截面梁和压弯构件的弯扭屈曲,同时在分析变截面薄壁构件的稳定性时可能产生较大的误差;常用壳体单元模型可能由于截面的局部屈曲模态不能得到整体屈曲的临界荷载;提出的壳体单元模型可以精确模拟薄壁构件的整体稳定性.此外,提出的壳体单元模型不仅可以用于分析薄壁构件的整体稳定性,也可以作为检验薄壁构件整体稳定理论正确性的重要依据.

[1] Documentation for ANSYS (Release 110) [R]. Pennsylvania: ANSYS, Inc, 2007.
[2] 张磊.考虑横向正应力的薄壁构件稳定理论及其应用[D]. 杭州:浙江大学,2005.
ZHANG Lei. A flexural torsional buckling theory considering the transverse normal stress and its applications [D]. Hangzhou: Zhejiang University, 2005.
[3] MOHRI F, BROUKI A, ROTH J C. Theoretical and numerical stability analyses of unrestrained, mono symmetric thinwalled beams [J]. Journal of Constructional Steel Research, 2003, 59: 63-90.
[4] ANDRADE A, CAMOTIN D, DINIS P B. Lateraltorsional buckling of singly symmetric webtapered thinwalled Ibeams: 1D model vs. shell FEA [J]. Computers and Structures, 2007, 85(17/18): 1343-1359.
[5] ZHANG L, TONG G S. Lateral buckling of webtapered Ibeams: a new theory [J]. Journal of Constructional Steel Research, 2008, 64(12): 1379-1393.
[6] TRAHAIR N S. Flexuraltorsional buckling of structures [M]. London: E & FN SPON, 1993.
[7] TONG G S, ZHANG L. A general theory for the flexuraltorsional buckling of thinwalled members I: energy method [J]. Advances in Structural Engineering, 2003, 6(4): 293-298.
[8] ZHANG L, TONG G S. Flexuraltorsional buckling of thinwalled beam members based on shell buckling theory [J]. ThinWalled Structures, 2004, 42(12): 1665-1687.
[9] CLARK J W, HILL H N. Lateral buckling of beams [J]. Journal of Structural Division, ASCE, 1960, 127: 180-201.
[10] 陈骥.钢结构稳定理论与设计[M].2版.北京:科学出版社,2003: 271-333.
[11] GB500172003钢结构设计规范[S]. 北京:中国计划出版社,2003: 184-194.
[12] RONAGH H R, BRADFORD M A, ATTARD M M. Nonlinear analysis of thinwalled members of variable crosssection. Part II: Application [J]. Computers and Structures, 2000, 77: 301-313.
[13] TONG G S, YAN X X, ZHANG L. Warping and bimoment transmission through diagonally stiffened beamtocolumn joints [J]. Journal of Constructional Steel Research, 2005, 61(6): 749-763.
[14] KWAK H G, KIM D Y, LEE H W. Effect of warping in geometric nonlinear analysis of spatial beams [J]. Journal of Constructional Steel Research, 2001, 57: 729-751.
[15] KRENK S. Constrained lateral buckling of Ibeam gable frames[J]. Journal of the Structural Engineering, ASCE, 1990, 116(12): 3268-3284.
[16] BASAGLIA G, CAMOTIM D, SILVESTRE N. Global buckling analysis of plane and space thinwalled frames in the context of GBT [J]. Thinwalled Structures, 2008, 46: 79-101.
[17] KRENK S, DAMKILDE L. Warping of joints in Ibeam assemblages [J]. Journal of Engineering Mechanics, 1991, 117(11): 2457-2474.
[18] BAIGENT A H, HANCOCK G J. Structural analysis of assemblages of thinwalled members [J]. Engineering Structures, 1982, 4: 207-216.
[19] 颜潇潇,童根树,张磊.梁柱节点翘曲位移传递的分析[J]. 钢结构,2005(3):25-29.
YAN Xiaoxiao, TONG Genshu, ZHANG Lei .Analysis on the warping transmission at beamtocolumn joints[J]. Steel Structures, 2005(3): 25-29.
[20] 颜潇潇.梁柱节点翘曲位移传递的分析[D] . 杭州:浙江大学,2005.
YAN Xiaoxiao. Analysis on the warping transmission at beamtocolumn joints[D]. Hangzhou: Zhejiang University, 2005.

[1] ZHANG Lei, LUO Gui-fa, TONG Gen-shu. Refined study on lateral-force resistance of dual structural system composed of moment-resisting frame and chevron braces[J]. J4, 2013, 47(10): 1815-1823.
[2] XIAO Nan, WANG Hai, CHEN Hua-peng, ZHANG Fei-lin. Symptom-based reliability and lifetime prediction for latticed structures under atmospheric corrosion[J]. J4, 2013, 47(8): 1373-1378.
[3] WANG Zhen-yu, ZHANG Jin-fan, FANG Cheng, LIU Guo-hua,JIANG Jian-qun. Study on the component-based model of semi-rigid
beam-to-column joints initial stiffness
[J]. J4, 2012, 46(11): 1998-2006.
[4] JIN Yang, TONG Gen-Shu. Elastic buckling of web restrained by flanges in I-section members[J]. J4, 2009, 43(10): 1883-1891.