Please wait a minute...
J4  2013, Vol. 47 Issue (10): 1815-1823    DOI: 10.3785/j.issn.1008-973X.2013.10.017
    
Refined study on lateral-force resistance of dual structural system composed of moment-resisting frame and chevron braces
ZHANG Lei, LUO Gui-fa, TONG Gen-shu
Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To investigate the post-buckling strength of the compressive brace in the chevron braced frame, the strength of the moment-resisting frame to the behavior of the dual structural system and the lateral load carrying capacity of the dual structural system, a series of nonlinear finite element analysis were conducted on the dual structural system using 50 typical numerical examples considering the provisions of the current design code. Special concerns were paid on the performances of the two substructures of the dual structural system, the moment-resisting frame and the chevron braces, in the entire loading history and their contributions to the behavior of the dual structural system. Results show that the lateral loading capacity of the dual system may rapidly decrease after the buckling of the compressive brace, where the decrease magnitude in the lateral loading capacity depends largely on the relative strength of the moment-resisting frame. The lateral loading capacity of the dual system may not be the sum of those of its two substructures. A refined method for the unbalance force acting at the beam of the chevron braced frame was proposed based on the analysis results.



Published: 01 October 2013
CLC:  TU 391  
Cite this article:

ZHANG Lei, LUO Gui-fa, TONG Gen-shu. Refined study on lateral-force resistance of dual structural system composed of moment-resisting frame and chevron braces. J4, 2013, 47(10): 1815-1823.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.10.017     OR     http://www.zjujournals.com/eng/Y2013/V47/I10/1815


人字撑-钢框架弹塑性抗侧性能的精细化研究

为了研究人字撑-钢框架双重抗侧力结构体系中受压支撑屈曲后的剩余强度、框架抗侧强度对结构体系抗侧性能的影响以及结构体系的最大抗侧承载力等问题,在考虑现行规范相关规定的基础上,设计50个典型人字撑-框架结构算例,开展弹塑性抗侧性能的非线性有限元分析.研究组成结构体系的2个子结构支撑架和框架在整个抗侧过程中的性能及其对结构体系总的抗侧性能的影响.结果表明,结构体系的抗侧性能在压撑屈曲后存在快速下降,框架的相对强弱对下降幅度具有重要的影响|框架与支撑的极限承载力之和不能作为结构体系的抗侧承载能力.根据计算结果提出人字撑横梁承受的不平衡力的改进计算方法.

[1] WU T Y. Extraction of flow energy by a wing oscillating in waves [J]. Journal of Ship Research, 1972, 14(1): 66-78.

[2] WU T Y, CHWANG A T. Extraction of flow energy by fish and birds in a wavy stream [C]∥Proceedings of the Symposium on Swimming and Flying in Nature. New York: Plenum Press, 1975.

[3] MCKINNEY W, DELAURIER J. The wingmill: an oscillatingwing windmill [J]. Journal of Energy, 1981, 5(2): 109115.

[4] JONES K D, PLATZER M F. Numerical computation of flappingwing propulsion and power extraction [C] ∥35th Aerospace Sciences Meeting and Exhibit. Reno, NV: AIAA Paper, 1997.

[5] SIMPSON B J, LICHT S, HOVER F S, et al. Energy extraction through flapping foils [C] ∥27th International Conference on Offshore Mechanics and Arctic Engineering. Berlin: [s.n.], 2008: 389-395.

[6] DUMAS G, KINSEY T. Eulerian simulations of oscillating airfoils in power extraction regime [C] ∥Advances in Fluid Mechanics VI. Southampton, UK: WIT, 2006: 245-254.

[7] 杨洋,童根树,张磊.压杆轴力与轴向位移全过程曲线的近似表达式[J].工程力学,2012,29(9): 17-24.

YANG Yang, TONG Genshu, ZHANG Lei. Solution of loaddisplacement curve for members in compression [J]. Engineering Mechanics, 2012,29(9): 17-24.

[8] BRANDONISIO G, TORENO M, MELE E, et al. Seismic design of concentric braced frames [J]. Journal of Constructional Steel Research, 2012, 78(1): 22-37.

[9] MARINO E M, NAKASHIMA M. Seismic performance and new design procedure for chevronbraced frames [J]. Earthquake Engineering and Structural Dynamics, 2006, 35(4): 433-452.

[10] GB500112010,建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.

[11] DOMINGUEZ E A, COLUNGA A. Nonlinear behavior of codedesigned reinforced concrete concentric braced frames under lateral loading [J]. Engineering Structures, 2010, 32(4): 944-963.

[12] MFDC04, Reglamento de construcciones para el distrito federal [S]. México City: Gaceta Oficial del Departamento del Distrito Federal, 2004.

[13] OKAZAKI T, LIGNOS D G, HIKINO T, et al. Dynamic response of a steel concentrically braced frame [C]∥ Proceedings of ASCE Structures Congress. Las Vegas: ASCE, 2011: 950-959.

[14] KIM J, LEE Y, CHOI H. Progressive collapse resisting capacity of braced frames [J]. The Structural Design of Tall and Special Buildings, 2011, 20(2): 257-270.

[15] GB500172003,钢结构设计规范[S]. 北京: 中国计划出版社, 2003.

[16] UBC1997, The uniform building code [S]. Whittier: International Conference of Building Officials, 1997.

[17] BECKER R. Seismic design of special concentrically braced steel frames [M]. Moraga: Structural Steel Educational Council, 1995.

[18] 童根树. 钢结构的平面内稳定[M]. 北京:中国建筑工业出版社,2005.

[1] XIAO Nan, WANG Hai, CHEN Hua-peng, ZHANG Fei-lin. Symptom-based reliability and lifetime prediction for latticed structures under atmospheric corrosion[J]. J4, 2013, 47(8): 1373-1378.
[2] WANG Zhen-yu, ZHANG Jin-fan, FANG Cheng, LIU Guo-hua,JIANG Jian-qun. Study on the component-based model of semi-rigid
beam-to-column joints initial stiffness
[J]. J4, 2012, 46(11): 1998-2006.
[3] ZHANG Lei, TONG Gen-shu. Finite element modelling of thin-walled members
in overall stability analysis
[J]. J4, 2011, 45(3): 531-538.
[4] JIN Yang, TONG Gen-Shu. Elastic buckling of web restrained by flanges in I-section members[J]. J4, 2009, 43(10): 1883-1891.