Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (1): 1-9    DOI: 10.3785/j.issn.1008-973X.2021.01.001
    
Experiment research on improving interface performance of steel fiber and mortal by silane coatings
Yong YAO1(),Zhen-jun YANG2,*(),Qi ZHANG3
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Hubei Provincial Key Laboratory of Geotechnical and Structural Safety, School of Civil Engineering, Wuhan University, Wuhan 433000, China
3. Huahong Jiaxin Group, Hangzhou 310000, China
Download: HTML     PDF(2518KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Steel fibers were impregnated in nine types of silane based solutions and dried at a high temperature to form silane coatings in order to improve the interfacial bonding properties. The treated and untreated fibers were embedded in cylindrical specimens of cementitious mortar, and a single fiber pullout test was conducted to obtain load-displacement curves. The test results showed that surfacial treatment of steel fibers with different silane coatings improved the fiber and mortar interfacial bonding properties by different extents. The peak pullout load increased by a maximum of 5.75 times, and the energy consumption increased by a maximum of 2.48 times, respectively. Silane Z6011, Z6020 and their composite coatings can greatly improve the interfacial bonding strength. These coatings mainly increase the chemical bonding force between steel fiber and mortar. Silane Z6030, Z6040 and their composite coatings improve the interfacial bonding strength relatively small, and mainly increase the interface sliding friction. The scanning electron microscope (SEM) was used to observe the surface of steel fibers and the interfacial transition zone of steel fibers and cementitious mortar. Results show that the silane based solutions can effectively form coatings on the surface of steel fibers. The silane coatings made the microstructure of the interface transitional zone denser, leading to significant improvement on the bonding behavior between steel fibers and mortar.



Key wordssteel fiber reinforced concrete      silane      surface modification      pullout test      interfacial transition zone     
Received: 10 April 2020      Published: 05 January 2021
CLC:  TU 528  
Corresponding Authors: Zhen-jun YANG     E-mail: yyong102@zju.edu.cn;zhjyang@whu.edu.cn
Cite this article:

Yong YAO,Zhen-jun YANG,Qi ZHANG. Experiment research on improving interface performance of steel fiber and mortal by silane coatings. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 1-9.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.01.001     OR     http://www.zjujournals.com/eng/Y2021/V55/I1/1


硅烷涂层提升钢纤维-砂浆界面性能的试验研究

为了提升钢纤维-砂浆界面的黏结性能,采用9种基于硅烷的表面处理剂对钢纤维进行浸渍处理并高温固化成膜;埋置于水泥砂浆圆柱体试块中,开展单根纤维拉拔试验,获得拉拔荷载-位移曲线. 试验结果表明,采用不同的硅烷涂层对钢纤维进行表面改性,可以不同程度地改善钢纤维-砂浆界面的黏结性能;拉拔峰值荷载最高增加5.75倍,拉拔能耗最多增加2.48倍. 硅烷Z6011和Z6020及复合涂层能够较大幅度地提升界面黏结强度,主要增加钢纤维与砂浆界面的化学黏结力;硅烷Z6030和Z6040及复合涂层对界面黏结强度的提升幅度相对较小,主要增加界面滑移摩擦力. 采用扫描电子显微镜(SEM)研究界面黏结性能的提升机理,发现硅烷涂层使得界面过渡区的微观结构更致密,显著提升了钢纤维-砂浆之间的黏结性能.


关键词: 钢纤维混凝土,  硅烷,  表面改性,  拉拔试验,  界面过渡区 
Fig.1 Specimen for pullout test
Fig.2 Device for single steel fiber pullout test
Fig.3 Pullout load-displacement curves of steel fibers treated by four silanes(group Z)
Fig.4 Pullout load-displacement curves of steel fibers treated by four silanes and zirconium nitrate(group ZZ)
Fig.5 Pullout load-displacement curves:of steel fibers treated by Z6020 and H2ZrF6(group ZH2)
Fig.6 Pullout load-displacement curves of untreated steel fibers(group U)
Fig.7 Typical single fiber pullout load–displacement curve
编号 处理方式 Pe/N Pmax/N Ps/N τmax/MPa τc/MPa τf/MPa G/J
U 未处理 70.65 99.91 41.95 0.80 0.46 0.33 1.07
Z1 Z6011 546.88 673.96 158.95 5.37 4.10 1.27 3.71
Z2 Z6020 407.25 467.10 132.35 3.72 2.67 1.05 2.43
Z3 Z6030 126.11 141.22 83.22 1.12 0.46 0.66 2.02
Z4 Z6040 233.74 260.43 138.57 2.07 0.97 1.10 2.76
ZZ1 Z6011+Zr(NO34 569.51 613.84 142.09 4.89 3.76 1.13 3.19
ZZ2 Z6020+Zr(NO34 404.70 475.95 140.37 3.79 2.67 1.12 3.56
ZZ3 Z6030+Zr(NO34 96.82 110.83 50.41 0.88 0.48 0.40 1.08
ZZ4 Z6040+Zr(NO34 174.03 186.43 108.25 1.48 0.62 0.86 2.41
ZH2 Z6020+H2ZrF6 522.34 587.41 156.05 4.68 3.43 1.24 3.52
Tab.1 Results of pullout tests
Fig.8 Pullout forces(Pe, Pmax, Ps
Fig.9 Interfacial bonding strength(τmax =τf +τc
Fig.10 Pullout energy for untreated and treated steel fibers
Fig.11 Increase of interfacial bonding properties and pullout energy caused by silane coatings
Fig.12 SEM micrographs and EDS spectra of steel fibers before pullout tests
Fig.13 SEM micrographs of steel fibers before pullout tests
Fig.14 SEM micrographs of steel fibers after pullout test
Fig.15 SEM micrographs of fiber-matrix cross-section
[1]   白敏, 牛荻涛, 姜磊, 等 钢纤维改善混凝土力学性能和微观结构的研究[J]. 硅酸盐通报, 2013, 32 (10): 2084- 2089
BAI Min, NIU Di-tao, JIANG Lei, et al Research on improving the mechanical properties and microstructure of concrete with steel fiber[J]. Bulletin of the Chinese Ceramic Society, 2013, 32 (10): 2084- 2089
[2]   SONG P S, HWANG S Y Mechanical properties of high-strength steel fiber-reinforced concrete[J]. Construction and Building Materials, 2004, 18 (9): 669- 673
doi: 10.1016/j.conbuildmat.2004.04.027
[3]   LI V C, WANG S, WU C, et al Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98 (6): 483- 492
[4]   RUTGER V, MARCO P, LUCIE V Short-term and creep pull-out behavior of polypropylene macrofibers at varying embedded lengths and angles from a concrete matrix[J]. Construction and Building Materials, 2017, 147: 858- 864
doi: 10.1016/j.conbuildmat.2017.05.005
[5]   HOSSAIN K M A Bond strength of GFRP bars embedded in engineered cementitious composite using RILEM beam testing[J]. International Journal of Concrete Structures and Materials, 2018, 12 (1): 1- 15
doi: 10.1186/s40069-018-0237-8
[6]   JIANG C, FAN K, WU F, et al Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete[J]. Materials and Design, 2014, 58: 187- 193
doi: 10.1016/j.matdes.2014.01.056
[7]   LI V C, WU C, WANG S, et al Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2002, 99 (5): 463- 472
[8]   SOULIOTI D V, BARKOULA N M, KOUTSIANOPOULOS F, et al The effect of fibre chemical treatment on the steel fibre/cementitious matrix interface[J]. Construction and Building Materials, 2013, 40: 77- 83
doi: 10.1016/j.conbuildmat.2012.09.111
[9]   SUN M, WEN D J, WANG H W, et al Influence of corrosion on the interface between zinc phosphate steel fiber and cement[J]. Materials and Corrosion-werkstoffe Und Korrosion, 2012, 63 (1): 67- 72
doi: 10.1002/maco.200905580
[10]   MILLER H D, AKBARNEZHAD A, MESGARI S, et al Performance of oxygen/argon plasma-treated steel fibres in cement mortar[J]. Cement and Concrete Composites, 2019, 97: 24- 32
doi: 10.1016/j.cemconcomp.2018.12.015
[11]   GRIFFITHS R, BALL A An assessment of the properties and degradation behaviour of glass-fibre-reinforced polyester polymer concrete[J]. Composites Science and Technology, 2000, 60 (14): 2747- 2453
doi: 10.1016/S0266-3538(00)00147-0
[12]   ALINEJAD S, NADERI R, MAHDAVIAN M The effect of zinc cation on the anticorrosion behavior of an eco-friendly silane sol–gel coating applied on mild steel[J]. Progress in Organic Coatings, 2016, 101: 142- 148
doi: 10.1016/j.porgcoat.2016.08.005
[13]   UNDERHILL R S, FISHER G C, FARRELL S P Energy dispersive X-ray investigation of silane coupling agent modified nickel-manganese-gallium particle surfaces[J]. Materials Chemistry and Physics, 2012, 132 (2): 253- 257
[14]   马一平 提高水泥石-集料界面黏结强度的研究[J]. 建筑材料学报, 1999, 2 (1): 35- 38
MA Yi-ping Study on increasing of interfacial bond strength between cement paste and aggregate[J]. Journal of Building Materials, 1999, 2 (1): 35- 38
[15]   鲍玖文, 李树国, 张鹏, 等 再生粗骨料硅烷浸渍处理对混凝土介质传输性能的影响[J]. 复合材料学报, 2020, 37 (10): 2602- 2609
BAO Jiu-wen, LI Shu-guo, ZHANG Peng, et al Effect of recycled coarse aggregate after strengthening by silane impregnation on mass transport of concrete[J]. Acta Materiae Compositae Sinica, 2020, 37 (10): 2602- 2609
[16]   唐冬云, 谢肖礼, 程华强, 等 硅烷偶联剂改性轻集料及其内养护性能[J]. 建筑材料学报, 2019, 22 (3): 394- 400
TANG Dong-yun, XIE Xiao-li, CHENG Hua-qiang, et al Internal curing properties of lightweight aggregate modified with silane coupling agent[J]. Journal of Building Materials, 2019, 22 (3): 394- 400
doi: 10.3969/j.issn.1007-9629.2019.03.010
[17]   苏达根, 何娟, 张京锋 硅烷偶联剂对沥青与石料及水泥胶砂界面的作用[J]. 华南理工大学学报: 自然科学版, 2007, 35 (2): 112- 115
SU Da-gen, HE Juan, ZHANG Jing-feng Effects of silane coupling on interface between asphalt and granite or cement mortar[J]. Journal of South China University of Technology: Natural Science Edition, 2007, 35 (2): 112- 115
[18]   熊光晶, 李毅强, 罗白云, 等 硅烷偶联剂改善新老混凝土修补界面层机理初探[J]. 工业建筑, 2005, 35 (9): 105- 106
XIONG Guang-jing, LI Yi-qiang, LUO Bai-yun, et al Primary investigation on modifying mechanism of new to old concrete repair interfacial layer by using silane coupling agent[J]. Industrial Construction, 2005, 35 (9): 105- 106
doi: 10.3321/j.issn:1000-8993.2005.09.029
[19]   钟世云, 付鲸铭 镀铜钢纤维表面改性及其耐腐蚀性能和黏结性能[J]. 建筑材料学报, 2019, 22 (4): 606- 610
ZHONG Shi-yun, FU Jing-ming Surface modifying of copper-plated steel fibers and its corrosion resistance and bond behavior with cement[J]. Journal of Building Materials, 2019, 22 (4): 606- 610
[20]   CASAGRANDE C A, CAVALARO S H, REPETTE W L, et al Ultra-high performance fibre-reinforced cementitious composite with steel microfibres functionalized with silane[J]. Construction and Building Materials, 2018, 178: 495- 506
doi: 10.1016/j.conbuildmat.2018.05.167
[21]   王双红, 赵时璐, 杨舒宇, 等 冷轧钢板表面氟锆酸盐-硅烷复合转化膜的制备与性能[J]. 电镀与涂饰, 2012, 31 (11): 39- 42
WANG Shuang-hong, ZHAO Shi-lu, YANG Shu-yu, et al Preparation and performance of fluorozirconate–silane composite conversion film on cold-rolled steel surface[J]. Electroplating and Finishing, 2012, 31 (11): 39- 42
doi: 10.3969/j.issn.1004-227X.2012.11.011
[22]   LEUNG C, SHAPIRO N Optimal steel fiber strength for reinforcement of cementitious materials[J]. Journal of Materials in Civil Engineering, 1999, 11 (2): 116- 123
doi: 10.1061/(ASCE)0899-1561(1999)11:2(116)
[23]   DENG F, DING X, CHI Y, et al The pull-out behavior of straight and hooked-end steel fiber from hybrid fiber reinforced cementitious composite: experimental study and analytical modeling[J]. Composite Structures, 2018, 206: 693- 712
doi: 10.1016/j.compstruct.2018.08.066
[24]   KANDA T, LI V C Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix[J]. Journal of Materials in Civil Engineering, 1998, 10 (1): 5- 13
doi: 10.1061/(ASCE)0899-1561(1998)10:1(5)
[25]   REN F, YANG Z, CHEN J, et al An analytical analysis of the full-range behaviour of grouted rockbolts based on a tri-linear bond-slip model[J]. Construction and Building Materials, 2010, 24 (3): 361- 370
doi: 10.1016/j.conbuildmat.2009.08.021
[26]   陈旭, 李绍纯, 卢霄, 等 复合硅烷材料对混凝土干缩干裂的抑制效果[J]. 混凝土, 2019, (1): 150- 152
CHEN Xu, LI Shao-chun, LU Xiao, et al Protective effect of silane material on drying shrinkage crack of concrete[J]. Concrete, 2019, (1): 150- 152
doi: 10.3969/j.issn.1002-3550.2019.01.036
[27]   王雪明, 李爱菊, 李国丽, 等 硅烷偶联剂在防腐涂层金属预处理中的应用研究[J]. 材料科学与工程学报, 2005, 23 (1): 146- 150
WANG Xue-ming, LI Ai-ju, LI Guo-li, et al Studies on the application for SCA in the metal pretreatment of anti-corrosion coatings[J]. Journal of Materials Science and Engineering, 2005, 23 (1): 146- 150
doi: 10.3969/j.issn.1673-2812.2005.01.040
[28]   ZANDI Z R, VERBEKEN K, ADRIAENS A The corrosion resistance of 316L stainless steel coated with a silane hybrid nanocomposite coating[J]. Progress in Organic Coatings, 2011, 72 (4): 709- 715
doi: 10.1016/j.porgcoat.2011.08.001
[1] Ying-ying WEI,Dong-yue JIANG,Qing-teng FU,Fei GUO. Behaviors of aerosol oil droplets on modified PAN fibrous webs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 196-201.
[2] Lei-qing HU,Jun CHENG,Ya-li WANG,Jian-zhong LIU,Jun-hu ZHOU,Ke-fa CEN. Improvement on surface hydrophily of hollow fiber-supported PDMS gas separation membrane by PVP modification[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 228-233.
[3] YE Ju-dong, YANG Zhen-jun, LIU Guo-hua, YAO Yong. Analytical solution and experimental verification of pullout force of twisted steel fibers in ultra-high performance concrete[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1911-1918.
[4] ZHANG Wei, HU Liang, XIAO Li-dan, HU Zhao-ying, WANG Ping. The application of SAM technology in biocompatibility
design of cell-based biosensor
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 345-350.