Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (3): 491-498    DOI: 10.3785/j.issn.1008-973X.2020.03.009
Civil Engineering     
Experimental study on direct shear performance of concrete-concrete interface of prefabricated structure sleeve grouting connection
Jin XIA1(),Run-li GAN1,Yan FANG1,Yu-xi ZHAO1,Wei-liang JIN1,2
1. College of Civil Engineering and Architecture Zhejiang University, Hangzhou 310012, China
2. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
Download: HTML     PDF(1342KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The effects of grouting layer thickness, longitudinal reinforcement, reinforcement ratio and axial pressure on cracking development, failure pattern, direct shear strength, crack-slip curve and load-slip curve of concrete-concrete interface under direct shear loading were studied. The test results show that, for the interface without longitudinal reinforcement, the average failure loads of the specimens on the grouting layer with thickness of 1 and 10 mm were 1.69 and 1.14 times of that with the thickness of 20 mm, respectively. For the concrete-concrete interface with longitudinal steel bars, the average failure loads of the specimens with the reinforcement ratio of 0.9% and 1.8% were 1.58 and 1.89 times of that of the unreinforced specimens, respectively. In addition, the ductility of interfacial direct shear failure is significantly improved. However, for the reinforced specimens without stirrups, the failure pattern developed into concrete splitting failure by longitudinal steel bars, which can reduce the direct shear strength and ductility of the concrete-concrete interface. For the concrete-concrete interface under axial pressure, the average failure loads of the specimens under axial compressive stress of 11.6 and 23.2 MPa were 6.06 and 7.81 times of that of the unpressurized specimens, respectively. Under axial pressure of 23.2 MPa, the failure mode is transformed into the failure of cast-in-place concrete after the interface failure.



Key wordsprefabricated concrete structure      sleeve grouting      concrete-concrete interface      thickness of grouting layer      longitudinal reinforcement      axial pressure      direct shear performance     
Received: 05 January 2019      Published: 05 March 2020
CLC:  TU 375  
Cite this article:

Jin XIA,Run-li GAN,Yan FANG,Yu-xi ZHAO,Wei-liang JIN. Experimental study on direct shear performance of concrete-concrete interface of prefabricated structure sleeve grouting connection. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 491-498.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.03.009     OR     http://www.zjujournals.com/eng/Y2020/V54/I3/491


装配式结构套筒灌浆连接的混凝土结合界面直剪性能试验研究

研究灌浆层厚度、纵向钢筋、配筋率、轴向压力等因素对直剪荷载作用下套筒灌浆连接的混凝土结合界面裂缝开展、破坏形态、直剪剪切强度、裂缝-滑移曲线以及荷载-滑移曲线的影响. 试验结果表明:对于无纵向钢筋试件结合界面,灌浆层厚度为1、10 mm界面的破坏荷载均值分别是灌浆层厚度为20 mm界面的1.69、1.14倍;对于纵向配筋结合界面,配筋率为0.9%、1.8%的试件界面破坏荷载均值分别是无筋试件界面的1.58、1.89倍,且结合界面直剪破坏延性显著提高,但由于未配箍筋,最终破坏形态为混凝土被纵向钢筋劈裂破坏,降低了结合界面的直剪剪切强度和延性;对于施加轴向压力试件,轴向压力为11.6、23.2 MPa的试件界面破坏荷载分别为无轴压试件界面的6.06、7.81倍,在23.2 MPa轴向压力下,破坏模式转化为界面破坏后的现浇部分混凝土本体破坏.


关键词: 装配式混凝土结构,  套筒灌浆,  结合界面,  灌浆层厚度,  纵向钢筋,  轴向压力,  直剪性能 
Fig.1 Specimen size and rebar arrangement of concrete-concrete interface of direct shear specimens
灌浆料参数 L0/mm L1/mm fc1/MPa fc2/MPa fc3/MPa
标准指标 ≥300 ≥260 ≥35 ≥60 ≥85
检测指标 350 300 45.8 70.3 86.7
Tab.1 Technical specifications and material properties of grouting material
混凝土强度等级 水泥 减水剂 河砂 石子
C30 434 6.3 620 1157 189
C35 490 6.6 595 1119 196
Tab.2 Mix proportion of precast concrete and cast-in-place concrete             kg/m3
试件编号 t/mm n r/% Fn/kN σn/MPa
  注:试件结合界面尺寸均为150 mm×150 mm,预制混凝土表面均切槽处理,每组试件数量为3.
A-1 20
A-2 10
A-3 1
B-1 20 1 16 0.9
B-2 20 2 16 1.8
C-1 20 262 11.6
C-2 20 524 23.2
Tab.3 Parameters of specimens C-1 and C-2
Fig.2 Direct shear test setup of concrete-concrete interface
Fig.3 Typical crack development process of concrete-concrete interface
试件编号 Fc / kN Fca / kN sc / mm Fmax / kN Fmaxa / kN R sF,max / mm 试件破坏模式
A-1-1 75 83.0 0.066 1 82 88.3 1.00 0.072 2 界面破坏
A-1-2 84 0.064 0 89 0.081 6
A-1-3 90 0.070 4 94 0.080 1
A-2-1 86 93.3 0.026 8 96 101.0 1.14 0.034 5
A-2-2 86 0.041 0 90 0.051 6
A-2-3 108 0.026 1 117 0.037 0
A-3-1 167 143.3 0.028 0 152 149.3 1.69 0.028 0
A-3-2 158 0.012 3 158 0.012 3
A-3-3 105 0.026 1 138 0.026 1
B-1-1 124 90.0 0.042 5 145 139.3 1.58 1.402 0 界面破坏,下降段发生
局部破坏
B-1-2 76 0.151 2 133 1.617 3
B-1-3 70 0.132 8 140 0.734 0
B-2-1 76 96.3 0.121 0 175 166.7 1.89 2.659 0
B-2-2 85 0.142 9 154 1.129 2
B-2-3 128 0.401 3 171 2.016 8
C-1-1 368 367.0 2.939 0 526 535.0 6.06 5.268 0 界面破坏
C-1-2 351 2.133 7 524 5.000 4
C-1-3 382 2.124 5 555 3.872 1
C-2-1 538 483.7 2.629 8 730 690.0 7.81 3.441 0 界面破坏伴随局部裂缝
C-2-2 468 2.775 1 660 4.250 0
C-2-3 445 2.000 5 680 2.792 1
Tab.4 Direct shear test results of concrete-concrete interface
Fig.4 Failure mode of direct shearing specimens
Fig.5 Curves of crack width-relative vertical displacement of different thickness of grouting layer
Fig.6 Curves of load-relative vertical displacement of different thickness of grouting layer
Fig.7 Curves of crack width-relative vertical displacement of different reinforcement ratios
Fig.8 Curves of load-relative vertical displacement of different reinforcement ratios
Fig.9 Curves of crack width-relative vertical displacement of different axial pressure
Fig.10 Curves of load-relative vertical displacement of different axial pressure
[1]   陈云钢, 刘家彬, 郭正兴, 等 装配式剪力墙水平拼缝钢筋浆锚搭接抗震性能试验[J]. 哈尔滨工业大学学报, 2013, 45 (6): 83- 89
CHEN Yun-gang, LIU Jia-bin, GUO Zheng-xing, et, al Test on seismic performance of precast shear wall with reinforcements grouted in holes and spliced indirectly in horizontal connections[J]. Journal of Harbin Institute of Technology, 2013, 45 (6): 83- 89
[2]   胡文博, 翟希梅, 姜洪斌 预制装配式钢筋混凝土一体化剪力墙抗震性能研究及构造方案优化[J]. 建筑结构学报, 2016, 37 (8): 1- 10
HU Wen-bo, ZHAI Xi-mei, JIANG Hong-bin Study on seismic performance and construction measures optimization of precast fabricated RC integration shear wall[J]. Journal of Building Structures, 2016, 37 (8): 1- 10
[3]   装配式混凝土结构技术规程: JGJ 1-2014[S]. 北京: 中国建筑工业出版社, 2014.
[4]   郭进军. 高温后新老混凝土粘结的力学性能研究[D]. 大连理工大学, 2003.
Guo Jin-jun. Study on mechanics performance of adherence of new and old concrete after high temperature[D]. Dalian: Dalian University of Tecnology, 2003.
[5]   陈峰, 郑建岚 自密实混凝土与老混凝土粘结强度的直剪试验研究[J]. 建筑结构学报, 2007, 28 (1): 59- 63
CHEN Feng, ZHENG Jian-lan Experimental research on direct shear behavior of adhesion of self-compacting concrete on existing concrete[J]. Journal of Building Structures, 2007, 28 (1): 59- 63
doi: 10.3321/j.issn:1000-6869.2007.01.009
[6]   肖成志, 田稳苓, 刘波, 等 设置界面构造锚筋的新老混凝土粘结性能试验研究[J]. 建筑结构学报, 2011, 32 (1): 75- 81
XIAO Cheng-zhi, TIAN Wen-ling, LIU Bo, et, al Experimental study on bonding properties of young and old concrete with constructional steel bar[J]. Journal of Building Structures, 2011, 32 (1): 75- 81
[7]   SANTOS P, JULIO E N B S A state-of-the-art review on roughness quantification methods for concrete surfaces[J]. Construction and Building Materials, 2013, 38 (1): 912- 923
[8]   MATTOCK A H Shear friction and high-strength concrete[J]. ACI Structural Journal, 2001, 98 (1): 50- 59
[9]   SUN C, LANGE D A, XIAO J, et al Contact behavior between cracked surfaces of recycled aggregate concrete[J]. Construction and Building Materials, 2017, 155: 1168- 1178
doi: 10.1016/j.conbuildmat.2017.08.125
[10]   MANSUR M A, VINAVAGAM T, TAN K H Shear transfer across a crack in reinforced high-strength concrete[J]. Journal of Materials in Civil Engineering, 2008, 20 (4): 294- 302
doi: 10.1061/(ASCE)0899-1561(2008)20:4(294)
[11]   RANDL N Design recommendations for interface shear transfer in fib Model Code 2010[J]. Structual Concrete, 2013, 14 (3): 230- 241
doi: 10.1002/(ISSN)1751-7648
[12]   SOETENS T, MATTHYS S Shear-stress transfer across a crack in steel fibre-reinforced concrete[J]. Cement and Concrete Composites, 2017, 82: 1- 13
doi: 10.1016/j.cemconcomp.2017.05.010
[13]   KWON S J, YANG K H, HWANG Y H, et al Shear friction strength of monolithic concrete interfaces[J]. Magazine of Concrete Research, 2017, 69 (5): 230- 244
doi: 10.1680/jmacr.16.00190
[14]   LI P, AN X, HE S, et al Three-dimensional bond model considering the coupled damage effect for dowel action[J]. Magazine of Concrete Research, 2017, 69 (14): 728- 744
doi: 10.1680/jmacr.16.00051
[15]   李鹏飞, 安雪晖, 何世钦, 等 考虑混凝土损伤效应的销栓作用承载力计算模型[J]. 清华大学学报: 自然科学版, 2016, 56 (12): 1255- 1263
LI Peng-fei, AN Xue-hui, HE Shi-qin, et, al Mathematical model for dowel bearing capacity considering the effect of concrete damage[J]. Tsinghua Science and Technology, 2016, 56 (12): 1255- 1263
[16]   叶果. 新老混凝土界面抗剪性能研究[D]. 重庆: 重庆大学, 2011.
Ye Guo. Study on the anti-shear behavior of bond-interface between new and old concrete[D]. Chongqing: Chongqing University, 2011.
[17]   吴刚, 冯德成 装配式混凝土框架节点基本性能研究进展[J]. 建筑结构学报, 2018, 39 (2): 1- 16
WU Gang, FENG De-cheng Research progress on fundamental performance of precast concrete frame beam-to-column connections[J]. Journal of Building Structures, 2018, 39 (2): 1- 16
[18]   薛伟辰, 褚明晓, 刘亚男, 等 高轴压比下新型预制混凝土剪力墙抗震性能[J]. 哈尔滨工程大学学报, 2018, 39 (3): 1106- 1110
XUE Wei-chen, CHU Ming-xiao, LIU Ya-nan, et, al Seismic performance of new precast concrete shear wall under high axial compression ratio[J]. Journal of Harbin Engineering University, 2018, 39 (3): 1106- 1110
[19]   钢筋连接用套筒灌浆料: JGT 408-2013[S]. 北京: 中国标准出版社, 2013
[20]   张雷顺, 韩菊红, 郭进军, 等 新老混凝土粘结补强在某钢筋混凝土桥面板加固整修中的应用[J]. 土木工程学报, 2003, 36 (4): 82- 85
ZHANG Lei-shun, HAN Ju-hong, GUO Jin-jun, et, al Application of bond between new and old concrete to strengthen RC bridge-deck[J]. China Civil Engineering Journal, 2003, 36 (4): 82- 85
doi: 10.3321/j.issn:1000-131X.2003.04.014
[21]   祝玉麒. 桩基托换工程中的托换结构分析[D]. 杭州: 浙江大学, 2017
ZHU Yu-qi. Structural analysis of underpinning engineering of pile foundation[D]. Hangzhou: Zhejiang University, 2017
[22]   邢强. 新旧混凝土界面的连接方法及受力性能研究[D]. 西安: 西安科技大学, 2012
XING Qiang. Research on the connecting method and mechanical behavior of bond-interface between new and old concrete[D]. Xi’an: Xi’an University of Science and Technology, 2012
[1] Shan-suo ZHENG,Yue ZHENG,Li-guo DONG,Liang KE,Yi-xin ZHANG. Constitutive model of confined concrete by corroded stirrups in coastal environment[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 48-55.
[2] NIE Wen,WEI Wen le,LIU Yang hao,MA Xiao,PENG Hui tian,LIU Qiang. Simulation on formation and dust separation of axial pressure and radial whirl air curtain[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1730-1737.