Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Energy Engineering,Power Engineering     
Thermal stress analysis of high temperature pipe using cell-based smoothed point interpolation method (CS-PIM)
LIU Yi jun, LU Huan, ZHANG Gui yong, ZONG Zhi
1. School of Naval Architecture Engineering, Dalian University of Technology, Dalian 116024, China;
2. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
Download:   PDF(1338KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The cell-based smoothed point interpolation method (CS-PIM) was applied for thermoelastic problems in high temperature pipe system, for which a finite element method (FEM) model generally results in bad accuracy due to the natural overlystiff property. In the scheme of CS-PIM, the computational domain was discretized into triangular/tetrahedron background cells, Then the generalized gradient smoothing operation was conducted upon the cells and shape functions were constructed using the point interpolation method. Both 2D and 3D cases study were conducted .The CS-PIM can obtain similar convergence rate but better accuracy for temperature results than the FEM does with the same mesh. For thermal stress analysis, the method achieves better results about both accuracy and convergence than the traditional FEM owing to the effectively softened stiffness.



Published: 01 November 2016
CLC:  TK 124  
Cite this article:

LIU Yi jun, LU Huan, ZHANG Gui yong, ZONG Zhi. Thermal stress analysis of high temperature pipe using cell-based smoothed point interpolation method (CS-PIM). JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2113-2119.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.11.011     OR     http://www.zjujournals.com/eng/Y2016/V50/I11/2113


采用单元基光滑点插值法的高温管道热应力分析

针对高温管道系统热应力分析中传统有限元方法刚度过硬导致的计算精度差问题,提出单元基光滑点插值法(CS-PIM)引入热应力分析中.该方法采用易于剖分的三角形/四面体背景网格,在单元基础上进行梯度光滑,用点插值法构造形函数.通过二维及三维的算例验证,结果表明,在计算高温管道温度时,基于相同网格的单元基光滑点插值法和传统有限元法的结果收敛率相当,但前者可以取得更高的精度|结果表明,在计算热应力结果时,得益于单元基光滑点插值法可以有效软化模型刚度,计算结果的精度和收敛率都明显高于传统有限元方法.

[1] 邓志伟. 压力管道的工况分析及其对材料性能的要求[J]. 管道技术与设备,2009,04:18-20.
DENG Zhiwei. Analysis on the operating conditions and material requirements of the pressure pipe [J]. Pipeline Technique and Equipment, 2009, 04: 18-20.
[2] HONG Z H, LIU R, LIU W B, et al. A lateral global buckling failure envelope for a high temperature and high pressure (HT/HP) submarine pipeline [J]. Applied Ocean Research, 2015, 51: 117-128.
[3] 黄一东. 高温管道保温材料的选择及应用[J]. 冶金能源,2013,32(4):57-60.
HUANG Yidong. Selection and application for high temperature pipeline insulation materials [J]. Energy for Metallurgical Industry, 2013,32(4): 57-60.
[4] 张志情,姜小龙. 锅炉高温过热器爆管分析[J]. 机电工程技术,2015,44(2):107-110.
ZHANG Zhiqing, JIANG Xiaolong. Analysis of the burst of boiler hightemperature superheater tubes [J]. Mechanical & Electrical Engineering Technology, 2015, 44(2): 107-110.
[5] 颜卫国,俞小莉,陆国栋,等. 热管中冷器的传热与阻力特性[J]. 浙江大学学报:工学版, 2011,45(1):132-135.
YAN Weiguo, YU Xiaoli, LU Guodong, et al. Heat transfer and pressure drop of heat pipe heat exchanger [J]. Journal of Zhejiang University: Engineering Science. 2011, 45(1): 132-135.
[6] 张锋,刘月明,楼俊. 高温压力管道三通接头的应力应变分析及仿真[J]. 中国计量学院学报,2011, 22(4):356-360.
ZHANG Feng, LIU Yueming, LOU Jun. Stress and strain analysis and simulation of high temperature pressure pipe tee joint [J]. Journal China University of Metrology, 2011, 22(4): 356-360.
[7] CHEN车小玉,段梦兰,曾霞光,等. 海底埋设高温管道隆起屈曲数值模拟研究[J]. 海洋工程,2013,31(5): 103-111.
Xiaoyu, DUAN Menglan, ZENG Xiaguang et al. Numerical simulation research on upheaval buckling of high temperature submarine buried pipeline [J]. The Ocean Engineering, 2013,31(5):103-111.
[8] 张颖莉,种道彤,刘继平,等. 方管内混合对流与管壁导热耦合换热的数值模拟[J]. 西安交通大学学报, 2012, 46(5):1924+43.
ZHANG Yingli, CHONG Daotong, LIU Jiping, et al. Numerical investigation on conjugated heat transfer of conduction in wall and mixed convection [J]. Xian Jiaotong University, 2012, 46(5): 1924+43.
[9] ZIENKIEWICZ O C, TAYLOR R L. The finite element method (V1: The Basis) [M]. 5th ed. Oxford: ButterworthHeinemann, 2000: 1663.
[10] LIU W K, JUN S, ZHANG Y F. Reproducing kernel particle methods [J]. Int J Number Meth Eng, 1995, 20(8/9): 1081-1106.
[11] ATLURI S N, SHEN S P. The meshless local petrovgalerkin (MLPG) method [M]. Balboa Blvd, USA∶Tech Science Press, 2002: 232-255.
[12] BELYTSCHKO T, LU Y, GU L. Elementfree Galerkin method [J]. Int J Number Meth Eng, 1994, 37(2): 229-256.
[13] LIU G R, ZHANG G Y. Smoothed point interpolation methods [M]. Singapore: World Scientific Publishing Co. Pte. Ltd, 2013: 237-525.
[14] 陶文铨,吴学红,戴艳俊. 无网格方法在流动和传热问题中的应用[J]. 中国电机工程学报,2010,30(8): 18.
TAO Wenquan, WU Xuehong, DAI Yanjun. Applications of meshless methods in fluid Flow and heat transfer problems [J]. Proceedings of the CSEE, 2010, 30(8): 18.
[15] LIU G R, ZHANG G Y. A normed G space and weakened weak (w2) formulation of a cellbased smoothed point interpolation method [J]. Int J CompmethSing, 2009, 6(1): 147-179.
[16] ZHANG G Y, LIU G R. Meshfree cellbased smoothed point interpolation method using isoparametric PIM shape functions and condensed RPIM shape functions [J]. Int J CompmethSing, 2011, 8(4): 705-730.
[17] BOLEY B A, WEINER J H. Theory of Thermal stress [M]. New York:John Wiley&Sons, 1950.
[18] LIU G R. Meshfree methods: moving beyond the finite element method [M] . 2nd ed. Boca Taton, USA∶CRC press, 2009: 60-81.

[1] WANG Yu fei, ZHANG Liang, WANG Tao, YU Zi tao, HU Ya cai. Effect of heat storage of graphite on flow boiling heat  transfer characteristics in solar receiver[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2087-2093.
[2] ZHOU Nai xiang, ZHANG Jing zhi, LIN Jin pin, LI Wei. Numerical investigation on heat transfer and hydrodynamic characteristics of gas-liquid Taylor flow in capillaries[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1859-1864.
[3] LI Jia qi, FAN Li wu, YU Zi tao. Boiling heat transfer characteristics during quench cooling on superhydrophilic surface[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1493-1498.
[4] FENG Zhao zan, LI Jun ye, LI Wei. Heat transfer characteristics of subcooled flow boiling in one sided heating mini gap[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 671-682.
[5] WANG Tao, WANG Liang, LIN Gui ping, BAI Li zhan, LIU Xiang yang, BU Xue qin, XIE Guang hui. Experimental study on performance of liquid cooling garment with application of titanium dioxide nanofluids[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 681-690.
[6] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 477-484.
[7] LI Peng cheng, SUN Zhi jian, HUANG Hao, CHENG Gong, HU Ya cai. Exergy analysis of heat transfer elements of corrugated plate with perforations[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 306-311.
[8] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 0-.
[9] DUAN Jun-jie, YI Guo-dong, ZHANG Shu-you. Cooling mechanism of condensed water film on surface of mould cavity under large temperature difference[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1478-1486.
[10] ZHANG Jing-zhi, LI Wei. Numerical simulation of gas-liquid Taylor flow in mini/micro tubes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1572-1576.
[11] HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai. Heat transfer and resistance characteristics of corrugated plate with spoiler holes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1242-1248.
[12] HUANG Lian-feng,TIAN Fu-you,LI Qing,FAN Li-wu,YU Zi-tao,WU Hai-yun. Analysis of gas-solid heat transfer performance in vertically-arranged sinter coolers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 916-923.
[13] HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai1. Heat transfer and resistance characteristics of corrugated plate with spoiler holes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 1-2.
[14] DING Qing, FANG Xin, FAN Li-wu, CHENG Guan-hua, YU Zi-tao, HU Ya-cai. Effect of hybrid nanofillers on thermal conductivity of composite phase change materials[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 330-335.
[15] GUO Hai, NI Yi-hua, WANG Jin, LU Guo-dong. Multi-objective performance optimization method of automotive air-conditioning condenser[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 142-159.