Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Electrical Engineering     
Small signal stability analysis of synchronized control based microgrid under multiple operating conditions
LU Ze han1, LAN Zhou2, WU Jing ying3, WANG Zhen1, XIN Huan hai1
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;2. Economic Research Institute of State Grid Zhejiang Electric Power Company, Hangzhou 310009, China;3. Hangzhou Power Supply Company of State Grid Zhejiang Electric Power Company, Hangzhou 310009, China
Download:   PDF(1158KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  
A synchronized control strategy of double fed induction generator (DFIG) in microgrid was presented  to overcome the potential severe problems caused by the integration of large scale wind turbine generators into microgrid, such as frequency instability and power imbalance. With synchronized control strategy, DFIG had the ability to provide power reserve, frequency regulation and effective support to the microgrid. Further, the small signal stability (SSS) analysis of a typical microgrid system including DFIG and energy storage system (ESS) under the synchronized control was performed. The calculated dominant eigenvalues under multiple operating conditions indicate that the dominant modes are related to the DFIG shaft and the inner/outer control loop parameters of DFIG or ESS. Finally, the impacts of two types of key control parameters on the dominant eigenvalues were investigated, including the de loading parameters and the active power droop control parameters. Further simulation under wind speed variation and load disturbance indicates that the DFIGs de loading operation can improve the system SSS performance. In addition, the coordination design of active power droop parameters in DFIG and ESS can also improve the damping of the dominant eigenvalues.


Published: 01 February 2016
CLC:  TM 712  
Cite this article:

LU Ze han, LAN Zhou, WU Jing ying, WANG Zhen, XIN Huan hai. Small signal stability analysis of synchronized control based microgrid under multiple operating conditions. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 0-.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.03.001     OR     http://www.zjujournals.com/eng/Y2016/V50/I2/0


基于同步控制的微网多工况小信号稳定分析

针对风机接入微网后较严重的频率稳定和功率平衡问题,提出微网环境下的双馈风机同步控制策略. 在风机的转子侧,通过引入风机主动降载控制使双馈风机具有向系统提供功率备用和一次调频的功能,可以更有效地向微网提供频率支持. 针对采用同步控制策略的典型风机 储能微网系统进行小信号稳定分析,计算得到的多工况主导特征根表明,微网的主导模式主要与风机轴系以及风机、储能控制内/外环两类控制参数密切相关. 通过风速、负荷等扰动仿真分析表明:风机的降载运行有助于改善微网系统的小扰动性能,协调设计风机和储能的有功下垂系数亦可有效改善主导特征根的阻尼.

[1] MARGARIS I D, PAPATHANASSIOU S A, HATZIARGYRIOU N D, et al. Frequency control in autonomous power systems with high wind power penetration [J]. IEEE Transactions on Sustainable Energy, 2012, 3(2): 189-199.
[2] MORREN J, HAAN S, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control [J]. IEEE Transactions on Power Systems, 2006, 21(1): 433-434.
[3] HUGHES F M, ANAYA LARA O, JENKINS N, et al. Control of DFIG based wind generation for power network support [J]. IEEE Transactions on Power Systems, 2005, 20(4): 1958-1966.
[4] 杜威,姜齐荣,陈蛟瑞. 微电网电源的虚拟惯性频率控制策略[J]. 电力系统自动化,2011,35(23):26-36.
DU Wei, JIANG Qi rong, CHEN Jiao rui. Frequency control strategy of distributed generations based on virtual inertia in a microgrid [J]. Automation of Electric Power Systems, 2011, 5(23): 26-36.
[5] CARDENAS R, PENA R, ASHER G, et al. Power smoothing in wind generation systems using a sensorless vector controlled induction machine driving a flywheel [J]. IEEE
Transactions on Energy Conversion, 2004, 19(1): 206-216.
[6] LALOR G, MULLANE A, O'MALLEY M. Frequency control and wind turbine technologies [J]. IEEE Transactions on Power Systems, 2005, 20(4): 19051913.
[7] MAURICIO J M, MARANO A, GOMEZ EXPOSITO A, et al. Frequency regulation contribution through variable speed wind energy conversion systems [J]. IEEE Transactions on Power Systems, 2009, 24(1): 173-180.
[8] WANG Y, DELILLE G, BAYEM H, et al. High wind power penetration in isolated power systems assessment of wind inertial and primary frequency responses [J]. IEEE Transactions on Power Systems, 2013, 28(3): 2412-2420.
[9] PENA R, CLARE J C, ASHER G M. A doubly fed induction generator using back to back PWM converters supplying an isolated load from a variable speed wind turbine [J]. IEEE Proceedings:Electric Power Applications, 1996, 143(5): 380-387.
[10] PENA R, CLARE J C, ASHER G M. Doubly fed induction generator using back to back PWM converters and its application to variable speed wind energy generation [J]. IEEE Proceedings:Electric Power Applications, 1996, 143(3): 231-241.
[11] PENA R, CARDENASB R, ESCOBARB E, et al. Control strategy for a doubly fed induction generator feeding an unbalanced grid or stand alone load [J]. Electric Power Systems Research, 2009, 79(2): 355-364.
[12] KATIRAEI F, IRAVANI M R, LEHN P W. Small signal dynamic model of a micro grid including conventional and electronically interfaced distributed resources [J]. IET Generation Transmission and Distribution, 2007, 1(3): 369-378.
[13] RUEDA J L, GUAMAN W H, CEPEDA J C, et al. Hybrid approach for power system operational planning with smart grid and small signal stability enhancement considerations [J]. IEEE Transactions on Smart Grid, 2013, 4(1): 530-539.
[14] YANG L H, XU Z, OSTERGAARD J, et al. Oscillatory stability and eigenvalue sensitivity analysis of a DFIG wind turbine system [J]. IEEE Transactions on Energy Conversion, 2011, 26(1): 328-339.
[15] YANG L H, YANG G Y, XU Z, et al. Optimal controller design of a doubly fed induction generator wind turbine system for small signal stability enhancement [J]. IET Generation Transmission and Distribution, 2010, 4(5): 579-597.
[16] ABAD G, LOPEZ J, RODRIGUEZ M, et al. Doubly fed induction machine modeling and control for wind energy generation [M]. London: Wiley Press, 2011:213-287.
[17] ROCABERT J, LUNA A, BLAABJERG F, et al. Control of power converters in AC microgrids [J]. IEEE Transactions on Power Electronics, 2012, 27(11): 4734-4749.
[18] BARKLUND E, POGAKU N, PRODANOVIC M, et al. Energy management in autonomous microgrid using stability constrained droop control of inverters [J]. IEEE Transactions on Power Systems, 2008, 23(5): 2346-2352.

 

[1] LU Ze han, LAN Zhou, WU Jing ying, WANG Zhen, XIN Huan hai. Small signal stability analysis of synchronized control based microgrid under multiple operating conditions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 536-544.
[2] WANG Guan-nan, SUN Li-ying,GAN De-qiang,WANG Bin-bin,XIN Huan-hai. Generalized phase compensation method for power system stabilizer design[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1295-1303.
[3] TU Jing-zhe, YU Yang, SHI Ji-quan, XIN Huan-hai. DC operation mode and control parameters based on
system self-organized criticality theory
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(10): 1831-1838.
[4] WANG Kang, FU Yang, XIN Huan-hai, WANG Guan-nan. Excitation controller design for power system based on
new Back-stepping method
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(4): 747-753.
[5] LIU Zhao-Yan, JIANG Quan-Yuan, XU Li-Zhong,et al. Stability regions of time-delayed power system based on clustering treatment of characteristic roots[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(8): 1473-1479.