Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Analysis of gas-solid heat transfer performance in vertically-arranged sinter coolers
HUANG Lian-feng1,TIAN Fu-you1,LI Qing2,FAN Li-wu1,YU Zi-tao1,WU Hai-yun2
1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China; 2. Zhejiang CWPC and BR Heavy Industry Co., Ltd, Hangzhou 310030, China
Download:   PDF(909KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 In order to analyze the gas-solid heat transfer performance in vertically-arranged sinter coolers, a one-dimensional steady-state model was established to evaluate the gas-solid heat transfer in a sinter bed. The amounts of energy and exergy recovered were used as the criteria to compare the waste heat recovery ability under different operating conditions. The model was solved numerically by an iterative algorithm. The results indicate that, when the size of vertically-arranged sinter coolers and the sinter particle parameters are given,the average air exergy increase is  1.28 GJ/h for each 10 ℃ increase of the sinter inlet temperature;whereas it decreases by 1.69 GJ/h for each 10  ℃ increase of the air inlet temperature(ambient temperature).With the gas-to-sinter flow rate ratio being increased from 550 to 700 m3/t (at standard temperature and pressure), the air exergy first increases toup to 49.51 GJ/h, followed by a sudden drop.Increasing the air inlet temperature leads to a drop of the maximum air exergy, while the corresponding optimal flow rate ratio increases. However, both the maximum air exergy and its corresponding optimal flow rate ratio increase with raising the sinter inlet temperature. The results presented may serve as a reference to maximize waste heat recovery in industrial practice by adjusting the flow rate ratio.



Published: 26 December 2015
CLC:  TK 124  
Cite this article:

HUANG Lian-feng,TIAN Fu-you,LI Qing,FAN Li-wu,YU Zi-tao,WU Hai-yun. Analysis of gas-solid heat transfer performance in vertically-arranged sinter coolers. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 916-923.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.05.015     OR     http://www.zjujournals.com/eng/Y2015/V49/I5/916


烧结矿立式冷却装置气固传热性能分析

为了分析烧结矿立式冷却装置的气固传热性能,建立一维稳态模型对料层气固传热进行计算,以回收的空气热量与空气作为评判标准,比较不同工况下的余热回收能力. 采用数值迭代算法求解模型. 结果表明,对于给定尺寸的烧结矿立式冷却装置和相同特性的烧结矿颗粒,烧结矿入口温度每增加10 ℃,空气值平均升高1.28 GJ/h;空气入口温度(环境温度)每增加10 ℃,空气值平均降低1.69 GJ/h;随着气料比从550到700 m3/t(标准状况下)逐渐增加,空气值增大至49.51 GJ/h后明显减小. 随着空气入口温度的增加,最大空气下降,对应的最佳气料比却升高;随着烧结矿入口温度的增加,最大空气及对应的最佳气料比均升高. 研究结果为生产实际中在工况改变的情况下通过调节气料比获得最大余热回收性能提供了参考.

[1] 蔡九菊,王建军,陈春霞,等. 钢铁企业余热资源的回收与利用[J]. 钢铁,2007,42(6):17.
CAI Jiu-ju,WANG Jian-jun,CHEN Chun-xia,et al. Recovery of residual-heat integrated steelworks [J]. Iron & Steel,2007,42(6):17.
[2] 姚华,盛德仁,林张新,等. 炼铁伴生能源联合循环系统热力学性能分析[J]. 浙江大学学报:工学版,2011,45(11):2008-2013.
YAO Hua,SHENG De-ren,LIN Zhang-xin,et al. Thermal performance analysis of associated energy combined cycle system in iron making process [J]. Journal of Zhejiang University :Engineering Science,2011,45(11):2008-2013.
[3] 商秀芹,卢建刚,孙优贤. 基于遗传规划的铁矿烧结终点2级预测模型[J]. 浙江大学学报:工学版,2010,44(7):1266-1269.
SHANG Xiu-qin,LU Jian-gang,SUN You-xian. Genetic program in based two prediction model of iron ore burning through point [J]. Journal of Zhejiang University :Engineering Science,2011,44(7):1266-1269.
[4] COTTON R S. Self-sealing sintering machine and sinter cooler:United States,3059912[P]. 1962-10-23.
[5] 董辉,赵勇,蔡九菊,等. 烧结—冷却系统的漏风问题 [J]. 钢铁,2012,47(1):95-99.
DONG Hui,ZHAO Yong,CAI Jiu-ju,et al. Leakage of sintering-cooling system [J]. Iron & Steel,2012,47(1):95-99.
[6] 张玉柱,赵斌,张尉然,等. 一种可高效回收烧结矿显热的立式烧结矿冷却机:中国,2009100745136[P]. 2009-06-23.
ZHANG Yu-zhu,ZHAO Bing,ZHANG Wei,et al. One vertically-oriented sinter cooling machine for effective sensible heat recovery of sinter:China,2009100745136[P]. 2009-6-23.
[7] 蔡九菊,董辉. 烧结过程余热资源的竖罐式回收装置与利用方法:中国,2009101873818[P]. 2009-09-15.
CAI Jiu-ju,DONG Hui. The method and device of sintering waste heat recovery and utilization with vertical tank:China,2009101873818[P]. 2009-09-15.
[8] TADAYUKI M,YUJIRO S. Heat transfer and fluid analysis of sinter coolers with consideration of size segregation and initial temperature distribution [J]. Heat Transfer Japanese. Research,1990,19(6):537-555.
[9] CAPUTO A C,CARDARELLI G,PELAGAGGE P M. Analysis of heat recovery in gas-solid moving beds using a simulation approach [J]. Applied Thermal Engineering,1996,16(1):89-99.
[10] CAPUTO A C,PELAGAGGE P.M. Heat recovery from moving cooling beds:transient modeling by dynamic simulation [J]. Applled Thermal Engineering,1999,19(1):21-35.
[11] 张欣,温治,楼国锋,等. 高温烧结矿气固换热过程数值模拟及参数分析[J]. 北京科技大学学报,2011,33(3):339-345.
ZHANG Xin,WEN Zhi,LOU Guo-feng,et al. Numerical smulation and parameters analysis on the gas-solid heat transfer process of high temperature sinter [J]. Journal of University of Science and Technology Beijing,2011,33(3):339-345.
[12] ZHANG X H,CHEN Z,ZHANG J Y,et al. Simulation and optimization of waste heat recovery in sinter cooling process [J]. Applied Thermal Engineering, 2013, 54(1), 715.
[13] LIU Y,YANG J,WANG J,et al. Energy and exergy analysis for waste heat cascade utilization in sinter cooling bed [J]. Energy,2014,67:370-380.
[14] 董辉,李磊,蔡九菊,等. 烧结余热回收竖罐内料层传热过程数值计算[J]. 东北大学学报:自然科学版,2012,33(9):1299-1302.
Dong Hui,LI Lei,CAI Jiu-ju,et al. Numerical smulation of heat exchange in vertical tank of waste heat recovery [J]. Journal of Northeastern University:Natural Science,2012,33(9):1299-1302.
[15] 董辉,力杰,罗远秋,等. 烧结矿冷却过程的实验研究[J]. 东北大学学报:自然科学版,2010,31(5):689-692.
DONG Hui,LI Jie,LUO Yuan-qiu,et al. Experimental study on cooling process of sinter [J]. Journal of Northeastern University:Natural Science,2010,31(5):682-692.
[16] 董辉,冯军胜,李磊,等.冷却风量影响烧结余热竖罐内传递系数实验研究[J]. 东北大学学报:自然科学版,2014,35(5):708-711.
DONG Hui,FENG Jun-sheng,LI Lei,et al. Experimental study on exergy transfer coefficient affected by cooling air volume in vertical tank of waste heat recovery [J]. Journal of Northeastern University:Natural Science,2014,35(5):708-711.
[17] LIU H F,ZHANG X X,WU M L,et al. Computational and experimental study of cooling process in coke dry quenching experiment shaft [J]. Journal of Thermal Science,2002,11(2):121-127.
[18] KUNII D,SUZUKI M. Particle-to-fluid heat and mass transfer in packed beds of fine particles [J]. International Journal of Heat and Mass Transfer, 1967, 10(24): 845852.
[19] HARTMAN M,TRNKA O,SVOBODA V. Fluidization characteristics of dolomite and calcined dolomite particles [J]. Chemical Engineering Science,2000,55:62696274.
[20] 潘立慧,魏松波,等. 干熄焦技术[M]. 北京:冶金工业出版社,2005:251-274.
[21] 孔宁,温治,冯俊小,等. 干熄炉内流动与传热过程数学模型的研究[J]. 冶金自动化,2004,24(3):27-30.
KONG Ning,WEN Zhi,FENG Jun-xiao. Study on one-dimension on-line mathematical model for flowing and heat transferring in CDQ unit [J]. Metallurgical Industry Automation,2004,24(3):27-30.
[22] JB/T90143-1999.连续输送设备散粒物料粒度和颗粒组成的测定[S]. 北京:机械科学研究院,1999.
JB/T90143-1999, Continuous handling equipment - loose bluk material - Determination of composition of size and pellet [S]. Beijing:China Academy of machinery Science & Technology,1999.
[23] GB/T24586-2009.铁矿石表观密度、真密度和孔隙率的测定[S]. 北京:中国标准出版社,2009.
GB/T24586-2009,Iron ores—Determination of apparent density,true density and porosity [S]. Beijing∶Standards Press of China,2009.
[24] GB/T14202-93.铁矿石(烧结矿、球团矿)容积密度测定方法[S]. 北京:中国标准出版社,1993.
GB/T14202-93.Iron ores (sinter and pellets) - Determination of bulk density [S]. Beijing:Standards Press of China,1993.
[25] 罗远秋. 烧结矿冷却过程实验与数值模拟研究[D]. 沈阳. 东北大学,2009:50,69.
LUO Yuan-qiu. Experimental and simulant study on cooling process of sinter [D]. Shenyang. Northeastern University,2009:50,69.

[1] WANG Yu fei, ZHANG Liang, WANG Tao, YU Zi tao, HU Ya cai. Effect of heat storage of graphite on flow boiling heat  transfer characteristics in solar receiver[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2087-2093.
[2] LIU Yi jun, LU Huan, ZHANG Gui yong, ZONG Zhi. Thermal stress analysis of high temperature pipe using cell-based smoothed point interpolation method (CS-PIM)[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2113-2119.
[3] ZHOU Nai xiang, ZHANG Jing zhi, LIN Jin pin, LI Wei. Numerical investigation on heat transfer and hydrodynamic characteristics of gas-liquid Taylor flow in capillaries[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1859-1864.
[4] LI Jia qi, FAN Li wu, YU Zi tao. Boiling heat transfer characteristics during quench cooling on superhydrophilic surface[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1493-1498.
[5] FENG Zhao zan, LI Jun ye, LI Wei. Heat transfer characteristics of subcooled flow boiling in one sided heating mini gap[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 671-682.
[6] WANG Tao, WANG Liang, LIN Gui ping, BAI Li zhan, LIU Xiang yang, BU Xue qin, XIE Guang hui. Experimental study on performance of liquid cooling garment with application of titanium dioxide nanofluids[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 681-690.
[7] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 477-484.
[8] LI Peng cheng, SUN Zhi jian, HUANG Hao, CHENG Gong, HU Ya cai. Exergy analysis of heat transfer elements of corrugated plate with perforations[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 306-311.
[9] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 0-.
[10] DUAN Jun-jie, YI Guo-dong, ZHANG Shu-you. Cooling mechanism of condensed water film on surface of mould cavity under large temperature difference[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1478-1486.
[11] ZHANG Jing-zhi, LI Wei. Numerical simulation of gas-liquid Taylor flow in mini/micro tubes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1572-1576.
[12] HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai. Heat transfer and resistance characteristics of corrugated plate with spoiler holes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1242-1248.
[13] HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai1. Heat transfer and resistance characteristics of corrugated plate with spoiler holes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 1-2.
[14] DING Qing, FANG Xin, FAN Li-wu, CHENG Guan-hua, YU Zi-tao, HU Ya-cai. Effect of hybrid nanofillers on thermal conductivity of composite phase change materials[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 330-335.
[15] GUO Hai, NI Yi-hua, WANG Jin, LU Guo-dong. Multi-objective performance optimization method of automotive air-conditioning condenser[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 142-159.