Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Numerical simulation of gas-liquid Taylor flow in mini/micro tubes
ZHANG Jing-zhi, LI Wei
Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1045KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 A numerical simulation of fully developed gas-liquid Taylor flow in mini/micro tubes with tube diameters of 0.5, 1, and 2 mm was conducted with the moving frame method. The bubble shape, bubble rising velocity, liquid film thickness, and pressure drop characteristics of Taylor flow were analyzed. The numerical data fit well with theresults in open literatures and empirical correlations.The results show that the unstable region nearthe bubble tail increases with increasing inlet Reynolds number. The length of Taylor bubbleand inner recirculation zone increases with increasing initial bubble void fraction.Thenormalized liquid film thickness and bubble rising velocityare proportional to capillary number, while they are independent on tube diameters and bubble void fraction. The correlation to predict normalized liquid film thicknessis amended with the data obtained from the present work and open literatures forcapillary number smaller than 0.01. The deviations ofthe predicted value from thenumerical data are less than ±15%. The frictionalfactorof the whole computation domain decreases with increasing Reynolds number and with increases in bubble void fraction. The separate model and flow pattern dependent model can predict frictional pressure dropgradients well.



Published: 01 August 2015
CLC:  TK 124  
Cite this article:

ZHANG Jing-zhi, LI Wei. Numerical simulation of gas-liquid Taylor flow in mini/micro tubes. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1572-1576.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.08.024     OR     http://www.zjujournals.com/eng/Y2015/V49/I8/1572


微小管径圆管气-液Taylor流动数值模拟

采用移动计算域方法,对微小圆管(管径为0.5、1、2 mm)内充分发展的气-液Taylor流动进行数值研究,分析Taylor气泡的形状、上升速度、液膜厚度及压降特性.将数值结果与文献数据及经验公式进行对比,吻合较好.模拟结果表明,随入口雷诺数增大,气泡尾部不稳定区域增大.气泡长度及内部回流区随气泡体积分数增大而增大.无量纲液膜厚度与气泡上升速度与毛细数正相关,与管径以及气泡体积分数关系较小.当毛细数小于0.01时,修正液膜厚度的预测公式、预测值与模拟结果的误差在±15%以内.计算域阻力因子随着入口雷诺数与气泡体积分数的增大而降低,分离模型以及流型依赖模型可以较好地预测本文模拟结果. 

[1] TRIPLETT K, GHIAASIAAN S, ABDEL K S, et al. Gas-liquid two-phase flow in microchannels Part I: two-phase flow patterns [J]. International Journal of Multiphase Flow, 1999, 25(3): 377-394.
[2] ZHAO T S, BI Q C. Co-current air-water two-phase flow patterns in vertical triangular microchannels [J]. International Journal of Multiphase Flow, 2001, 27(5): 765-782.
[3] LIU H, VANDU C O, KRISHNA R. Hydrodynamics of Taylor flow in vertical capillaries: flow regimes, bubble rise velocity, liquid slug length, and pressure drop [J]. Industrial & Engineering Chemistry Research, 2005, 44(14): 4884-4897.
[4] KREUTZER M T, EIJNDEN M G V D, KAPTEIJN F, et al. The pressure drop experiment to determine slug lengths in multiphase monoliths [J]. Catalysis Today, 2005, 105(3/4): 667-672.
[5] HAN Y, SHIKAZONO N. Measurement of liquid film thickness in micro square channel [J]. International Journal of Multiphase Flow, 2009, 35(10): 896-903.
[6] QIAN D, LAWAL A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel [J]. Chemical Engineering Science, 2006, 61(23): 7609-7625.
[7] GUPTA R, FLETCHER D F, HAYNES B S. On the CFD modelling of Taylor flow in microchannels [J]. Chemical Engineering Science, 2009, 64(12): 2941-2950.
[8] SHAO N, SALMAN W, GAVRIILIDIS A, et al. CFD simulations of the effect of inlet conditions on Taylor flow formation [J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1603-1611.
[9] TALIMI V, MUZYCHKA Y S, KOCABIYIK S. Slug flow heat transfer in square microchannels [J]. International Journal of Heat and Mass Transfer, 2013, 62(0): 752-760.
[10] KREUTZER M T, KAPTEIJN F, MOULIJN J A, et al. Inertial and interfacial effects on pressure drop of Taylor flow in capillaries [J]. AIChE Journal, 2005, 51(9): 2428-2440.
[11] TAHA T, CUI Z F. CFD modelling of slug flow inside square capillaries [J]. Chemical Engineering Science, 2006, 61(2): 665-675.
[12] ZHENG D, HE X, CHE D. CFD simulations of hydrodynamic characteristics in a gas-liquid vertical upward slug flow [J]. International Journal of Heat and Mass Transfer, 2007, 50(21): 4151-4165.
[13] LIU D, WANG S. Hydrodynamics of Taylor flow in noncircular capillaries [J]. Chemical Engineering and Processing: Process Intensification, 2008, 47(12): 2098-2106.
[14] ARAJO J D P, MIRANDA J M, PINTO A M F R, et al. Wide-ranging survey on the laminar flow of individual Taylor bubbles rising through stagnant Newtonian liquids [J]. International Journal of Multiphase Flow, 2012, 43(0): 131-148.
[15] ASADOLAHI A N, GUPTA R, FLETCHER D F, et al. CFD approaches for the simulation of hydrodynamics and heat transfer in Taylor flow [J]. Chemical Engineering Science, 2011, 66(22): 5575-5584.
[16] ASADOLAHI A N, GUPTA R, LEUNG S S Y, et al. Validation of a CFD model of Taylor flow hydrodynamics and heat transfer [J]. Chemical Engineering Science, 2012, 69(1): 541-552.
[17] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface-tension [J]. Journal of Computational Physics, 1992, 100(2): 335-354.
[18] YOUNGS D. Time-dependent multi-material flow with large fluid distortion [M]. [S. l.] :Academic Press, 1982: 273-285.
[19] AUSSILLOUS P, QUR D. Quick deposition of a fluid on the wall of a tube [J]. Physics of Fluids, 2000, 12(10): 2367-2371.
[20] LOCKHART R, MARTINELLI R. Proposed correlation of data for isothermal two-phase, two-component flow in pipes [J]. Chem Eng Prog, 1949, 45(1): 39-48.
[21] LI W, WU Z. A general correlation for adiabatic two-phase pressure drop in micro/mini-channels [J]. International Journal of Heat and Mass Transfer, 2010, 53(13-14): 2732-2739.
[22] KIM S M, MUDAWAR I. Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling [J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2):718-734.

[1] LIU Yi jun, LU Huan, ZHANG Gui yong, ZONG Zhi. Thermal stress analysis of high temperature pipe using cell-based smoothed point interpolation method (CS-PIM)[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2113-2119.
[2] WANG Yu fei, ZHANG Liang, WANG Tao, YU Zi tao, HU Ya cai. Effect of heat storage of graphite on flow boiling heat  transfer characteristics in solar receiver[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2087-2093.
[3] ZHOU Nai xiang, ZHANG Jing zhi, LIN Jin pin, LI Wei. Numerical investigation on heat transfer and hydrodynamic characteristics of gas-liquid Taylor flow in capillaries[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1859-1864.
[4] LI Jia qi, FAN Li wu, YU Zi tao. Boiling heat transfer characteristics during quench cooling on superhydrophilic surface[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1493-1498.
[5] WANG Tao, WANG Liang, LIN Gui ping, BAI Li zhan, LIU Xiang yang, BU Xue qin, XIE Guang hui. Experimental study on performance of liquid cooling garment with application of titanium dioxide nanofluids[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 681-690.
[6] FENG Zhao zan, LI Jun ye, LI Wei. Heat transfer characteristics of subcooled flow boiling in one sided heating mini gap[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 671-682.
[7] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 477-484.
[8] LI Peng cheng, SUN Zhi jian, HUANG Hao, CHENG Gong, HU Ya cai. Exergy analysis of heat transfer elements of corrugated plate with perforations[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 306-311.
[9] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 0-.
[10] DUAN Jun-jie, YI Guo-dong, ZHANG Shu-you. Cooling mechanism of condensed water film on surface of mould cavity under large temperature difference[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1478-1486.
[11] HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai. Heat transfer and resistance characteristics of corrugated plate with spoiler holes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1242-1248.
[12] HUANG Lian-feng,TIAN Fu-you,LI Qing,FAN Li-wu,YU Zi-tao,WU Hai-yun. Analysis of gas-solid heat transfer performance in vertically-arranged sinter coolers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 916-923.
[13] HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai1. Heat transfer and resistance characteristics of corrugated plate with spoiler holes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 1-2.
[14] DING Qing, FANG Xin, FAN Li-wu, CHENG Guan-hua, YU Zi-tao, HU Ya-cai. Effect of hybrid nanofillers on thermal conductivity of composite phase change materials[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 330-335.
[15] GUO Hai, NI Yi-hua, WANG Jin, LU Guo-dong. Multi-objective performance optimization method of automotive air-conditioning condenser[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 142-159.