Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Energy and Enviromental Engineering     
Numerical investigation on heat transfer and hydrodynamic characteristics of gas-liquid Taylor flow in capillaries
ZHOU Nai xiang, ZHANG Jing zhi, LIN Jin pin, LI Wei
1. Shandong Urban and Rural Planning and Design Institute, Jinan 250013, China;
2. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1318KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Numerical work of fully developed gas-liquid Taylor flow in vertical upward capillaries with inner diameter of 1 mm under isothermal wall boundary condition was performed with the dynamic mesh model. The effects of inlet Reynolds number and gas void fraction on thermal and flow characteristics of Taylor flow were discussed. Results indicate that the friction factor in the liquid slug is higher than that of single-phase flow, and the empirical correlation can predict the numerical data well. The apparent liquid slug Nusselt number increasing with increasing gas void fraction and remains nearly constant with increasing inlet Reynolds number. The Taylor bubble and the thin liquid film region have insignificant contribution to the overall heat transfer coefficients in Taylor flow under isothermal wall boundary condition. The inner recirculation in the liquid slug region can improve the heat transfer between the tube wall and the core region, accelerate the heat transfer process, and enhance the heat transfer performance in Taylor flow. The effect of inner recirculation on heat transfer enhancement decreases with increasing liquid slug length.



Published: 28 October 2016
CLC:  TK 124  
Cite this article:

ZHOU Nai xiang, ZHANG Jing zhi, LIN Jin pin, LI Wei. Numerical investigation on heat transfer and hydrodynamic characteristics of gas-liquid Taylor flow in capillaries. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1859-1864.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.10.004     OR     http://www.zjujournals.com/eng/Y2016/V50/I10/1859


毛细管内气-液Taylor流动换热特性数值模拟

采用动网格技术,对恒壁温边界下,竖直上升毛细管(管径为1 mm)内充分发展状态的气-液Taylor流动进行数值研究,分析入口雷诺数、气泡体积分数对Taylor流动的换热阻力特性的影响.模拟结果表明,由于Taylor气泡的存在,液柱区域的摩擦阻力因子高于单相流动,模拟结果与经验公式吻合较好.液柱表观努赛尔特数随气泡体积分数的增大而增大,基本不随入口雷诺数的变化而改变.在恒壁温边界下,Taylor气泡及液膜区域对整体传热的贡献较小.液柱区域内循环可以提高加强核心区域与近壁面区域的热量交换,加快换热过程,提高Taylor流动的传热效果.内循环对换热的强化作用随着液柱长度的增大而降低.

[1] ZHAO T S, BI Q C. Cocurrent airwater twophase flow patterns in vertical triangular microchannels [J]. International Journal of Multiphase Flow, 2001, 27(5): 765-782.[2] LIU H, VANDU C O, KRISHNA R. Hydrodynamics of Taylor flow in vertical capillaries: flow regimes, bubble rise velocity, liquid slug length, and pressure drop [J]. Industrial and Engineering Chemistry Research, 2005, 44(14): 4884-4897.
[3] HAN Y, SHIKAZONO N. Measurement of the liquid film thickness in micro tube slug flow [J]. International Journal of Heat and Fluid Flow, 2009, 30(5): 842-853.
[4] KREUTZER M T, KAPTEIJN F, MOULIJN J A, et al.Inertial and interfacial effects on pressure drop of Taylor flow in capillaries [J]. AIChE Journal, 2005,51(9): 2428-2440.[5] LEUNG S Y, LIU Y, FLETCHER D F, et al. Heat transfer in well-characterised Taylor flow [J]. Chemical Engineering Science, 2010, 65(24): 6379-6388.
[6] WALSH P A, WALSH E J, MUZYCHKA Y S. Heat transfer model for gasliquid slug flows under constant flux [J]. International Journal of Heat and Mass Transfer, 2010, 53(15/16): 3193-3201.
[7] LIM Y S, YU S M, NGUYEN N T. Flow visualization and heat transfer characteristics of gasliquid twophase flow in microtube under constant heat flux at wall [J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 350-359.
[8] GUPTA R, FLETCHER D F, HAYNES B S. CFD modelling of flow and heat transfer in the Taylor flow regime [J]. Chemical Engineering Science, 2010,65(6): 2094-2107.[9] ZHANG J, LI W. Investigation of hydrodynamic and heat transfer characteristics of gasliquid Taylor flow in vertical capillaries [J]. International Communications in Heat and Mass Transfer, 2016, 74: 110.
[10] MEHDIZADEH A, SHERIF S A, LEAR W E.Numerical simulation of thermofluid characteristics of twophase slug flow in microchannels [J]. International Journal of Heat and Mass Transfer, 2011, 54(15/16): 3457-3465.
[11] ASADOLAHI A N, GUPTA R, LEUNG S Y, et al. Validation of a CFD model of Taylor flow hydrodynamics and heat transfer [J]. Chemical Engineering Science, 2012, 69(1): 541-552.
[12] TALIMI V, MUZYCHKA Y S, KOCABIYIK S. Slug flow heat transfer in square microchannels [J]. International Journal of Heat and Mass Transfer, 2013, 62: 752-760.
[13] CHE Z, WONG T N, NGUYEN N T. Heat transfer in plug flow in cylindrical microcapillaries with constant surface heat flux [J]. International Journal of Thermal Sciences, 2013, 64: 204-212.
[14] 张井志,李蔚.微小管径圆管气液Taylor流动数值模拟[J].浙江大学学报:工学版, 2015, 49(8): 1572-1577.
ZHANG Jingzhi, LI Wei. Numerical simulation of gasliquid Taylor flow in mini/micro tubes [J], Journal of Zhejiang University: Engineering Science, 2015,49(8): 15721577.
[15] 张井志,李蔚.毛细管内气液Taylor流动的气泡及阻力特性[J].化工学报, 2015, 66(3): 942-948.
ZHANG Jingzhi, LI Wei. Bubble and frictional characteristics of gasliquid Taylor flow in capillary tube [J]. CIESC Journal, 2015, 66(3): 942-948.
[16] 过增元.换热器中的场协同原则及其应用[J].机械工程学报,2003, 39(12): 19.
GUO Zengyuan. Principle of field coordination in heat exchangers and its applications [J]. Chinese Journal of Mechanical Engineering, 2003, 39(12): 19.

[1] LIU Yi jun, LU Huan, ZHANG Gui yong, ZONG Zhi. Thermal stress analysis of high temperature pipe using cell-based smoothed point interpolation method (CS-PIM)[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2113-2119.
[2] WANG Yu fei, ZHANG Liang, WANG Tao, YU Zi tao, HU Ya cai. Effect of heat storage of graphite on flow boiling heat  transfer characteristics in solar receiver[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2087-2093.
[3] LI Jia qi, FAN Li wu, YU Zi tao. Boiling heat transfer characteristics during quench cooling on superhydrophilic surface[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1493-1498.
[4] WANG Tao, WANG Liang, LIN Gui ping, BAI Li zhan, LIU Xiang yang, BU Xue qin, XIE Guang hui. Experimental study on performance of liquid cooling garment with application of titanium dioxide nanofluids[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 681-690.
[5] FENG Zhao zan, LI Jun ye, LI Wei. Heat transfer characteristics of subcooled flow boiling in one sided heating mini gap[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 671-682.
[6] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 477-484.
[7] LI Peng cheng, SUN Zhi jian, HUANG Hao, CHENG Gong, HU Ya cai. Exergy analysis of heat transfer elements of corrugated plate with perforations[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 306-311.
[8] LIU Min jie, ZHU Zi qin, XU Can ling, FAN Li wu, LU Hai, YU Zi tao. Constrained melting heat transfer of composite phase change materials inside  spherical container[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 0-.
[9] DUAN Jun-jie, YI Guo-dong, ZHANG Shu-you. Cooling mechanism of condensed water film on surface of mould cavity under large temperature difference[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1478-1486.
[10] ZHANG Jing-zhi, LI Wei. Numerical simulation of gas-liquid Taylor flow in mini/micro tubes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1572-1576.
[11] HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai. Heat transfer and resistance characteristics of corrugated plate with spoiler holes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1242-1248.
[12] HUANG Lian-feng,TIAN Fu-you,LI Qing,FAN Li-wu,YU Zi-tao,WU Hai-yun. Analysis of gas-solid heat transfer performance in vertically-arranged sinter coolers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 916-923.
[13] HUANG Feng-liang, SUN Zhi-jian, LI Peng-cheng, GU Jin-fang, HU Ya-cai1. Heat transfer and resistance characteristics of corrugated plate with spoiler holes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 1-2.
[14] DING Qing, FANG Xin, FAN Li-wu, CHENG Guan-hua, YU Zi-tao, HU Ya-cai. Effect of hybrid nanofillers on thermal conductivity of composite phase change materials[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 330-335.
[15] GUO Hai, NI Yi-hua, WANG Jin, LU Guo-dong. Multi-objective performance optimization method of automotive air-conditioning condenser[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(1): 142-159.