Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (5): 855-865    DOI: 10.3785/j.issn.1008-973X.2021.05.006
    
Design and experiment of remote handling motor replacement device based on passive compliant mechanism
Jun-xia JIANG(),Xin-yuan ZHANG,Bang-ming TAO,Qun DONG
School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(2077KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The power motor of intelligent equipment in hot cells of nuclear industry is prone to failure due to nuclear radiation, so the adoption of remote handling motor replacement technology is the key to the normal operation of intelligent equipment in hot cells. To solve the above problem, the design requirements of remote handling motor replacement device were analyzed, and the remote handling motor replacement method based on passive compliance was proposed. Three contact states of the shaft hole assembly were performed, and the mechanical model of motor vertical insertion was constructed. A motor docking strategy was put forward, and a five-degree of freedom (5-DOF) space passive compliant mechanism was designed. The remote handling motor replacement device structure and the remote handling replacement work flow were designed based on the characteristics of the remote operation robotic arm in hot cells. Experimental device was manufactured, and the success rate and the time-consuming of remote handling replacement were counted. In addition, the actual test value and the theoretical value of insertion force predicted by the motor vertical insertion mechanical model were compared. Results verified the reliability of the remote handling motor replacement device and the effectiveness of the motor vertical insertion mechanical model. The proposed technology provides basic technology for the automatic maintenance of intelligent equipment in hot cells, and also provides inspiration for the robot to perform other automated assembly tasks.



Key wordsautomatic quick-replacement motor      hot cell environment      remote operation robotic arm      compliant assembly      passive compliant mechanism     
Received: 07 May 2020      Published: 10 June 2021
CLC:  TH 122  
Cite this article:

Jun-xia JIANG,Xin-yuan ZHANG,Bang-ming TAO,Qun DONG. Design and experiment of remote handling motor replacement device based on passive compliant mechanism. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 855-865.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.05.006     OR     http://www.zjujournals.com/eng/Y2021/V55/I5/855


基于被动柔顺机理的电机遥操作更换机构设计和实验

核工业热室中智能装备的驱动电机受核辐射影响易损坏,采用电机遥操作更换技术是确保热室内智能装备正常运作的关键. 针对这一问题,分析电机遥操作更换设计需求,提出基于被动柔顺机理的电机遥操作更换方法;分析轴孔装配3种接触状态,建立电机垂向插配力学模型,提出动力对接策略,设计五自由度(5-DOF)空间被动柔顺机构;基于热室中遥操作机械臂的特点,设计电机遥操作更换结构和工作流程. 构建实验装置,测试统计电机更换成功率和耗时,并针对电机垂向插配力学模型所预测的插配力进行检测和理论计算比对,验证电机遥操作更换结构的可靠性和电机垂向插配力学模型的有效性. 电机遥操作更换技术能为热室中智能装备的自动维护提供技术支撑,也为机器人执行其他自动化装配任务提供借鉴.


关键词: 电机自动更换,  热室环境,  遥操作机械臂,  柔顺装配,  被动柔顺机构 
Fig.1 Two kinds of motor connection forms
Fig.2 Schematic diagram of remote handling motor replacement
Fig.3 Four stages of hole-shaft assembly
Fig.4 On-site schematic diagram of remote handling motor replacement
Fig.5 Schematic diagram of motion docking
Fig.6 Process chart of motion docking
Fig.7 Schematic diagram of compliant assembly
Fig.8 Force model during chamfer crossing
Fig.9 Force model through one-point contact
Fig.10 Force model during two-point contact
Fig.11 Schematic diagram of 5-DOF passive compliant mechanism
Fig.12 Structure design of remote handling motor replacement device
Fig.13 Structure diagram of compliant mechanism
孔轴参数 数值 装配参数 数值 实验参数 数值
2R 90 mm W 10 mm x0 4 mm
2r 89.96 mm α 1/3 rad θ0 0.05 rad
L 373 mm LMAX 50 mm μ 0.15
Tab.1 Initial parameter of Matlab simulation
Fig.14 Effect of horizontal stiffness on insertion force
Fig.15 Effect of rotational stiffness on insertion force
Fig.16 Structure diagram of motor component
Fig.17 Structure diagram of fixed components
Fig.18 Schematic of remote handling motor replacement
Fig.19 Positioning process of guide flange
Fig.20 Process of motion docking
Fig.21 Flowchart of remote handling motor replacement
Fig.22 Experiment site of remote handling motor replacement
孔轴参数 数值 装配参数 数值 实验参数 数值
2R 90 mm W 10 mm x 0~6 mm
2r 89.96 mm α 1/3 rad θ 0~0.05 rad
L 373 mm LMAX 50 mm m0g 153 N
μ 0.15 z 0~50 mm z0 0 mm
Tab.2 Parameters of remote handling motor replacement device
Fig.23 Success rate under different errors
Fig.24 Actual insertion force measured in experiment
[1]   王鹏飞. 托卡马克类超冗余机械臂结构综合及入腔运动规划[D]. 上海: 上海交通大学, 2017.
WANG Peng-fei. Structure synthesis and motion planning of entering Tokamak for Tokamak-type hyper-redundant manipulator[D]. Shanghai: Shanghai Jiaotong University, 2017.
[2]   吴炳龙, 曲道奎, 徐方 基于力/位混合控制的工业机器人精密轴孔装配[J]. 浙江大学学报: 工学版, 2018, 52 (1): 165
WU Bing-long, QU Dao-kui, XU Fang Industrial robot high precision peg-in-hole assembly based on hybrid force/position control[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (1): 165
[3]   BABACI S, AMIRAT Y, PONTNAU J, et al. Fuzzy adaptation impedance of a 6-DOF parallel robot application to peg in hole insertion [C]// Proceedings of 5th IEEE International Conference on Fuzzy Systems. New Orleans: IEEE Computer Society Press, 1996: 1770-1776.
[4]   CHAN S P, LIAW H C Generalized impedance control of robot for assembly tasks requiring compliantmanipulation[J]. IEEE Transaction on Industrial and Electronics, 1996, 43 (4): 453- 461
doi: 10.1109/41.510636
[5]   JEAN J H, FU L C Adaptive hybrid control strategies for constrained robots[J]. IEEE Transactions on Automatic Control, 1993, 38 (4): 598- 603
doi: 10.1109/9.250529
[6]   JEON D, TOMIZUKA M Learning hybrid force and position control of robot manipulators[J]. IEEE Transactions on Robotics and Automation, 1993, 9 (4): 423- 430
doi: 10.1109/70.246053
[7]   IOSSIFIDIS I, SCHONER G. Dynamical systems approach for the autonomous avoidance of obstacles and joint-limits for an redundant robot arm [C]// Proceedings of the 2006 IEEE International Conference on Intelligent Robots and Systems. Beijing: IEEE, 2006: 580-585.
[8]   王刚, 吴广顺 机器人装配作业的主被动复合柔顺[J]. 中国机械工程, 1998, (9): 62- 64
WANG Gang, WU Guang-shun Active passive compound compliance in the robotic assembly process[J]. Chinese Journal of Mechanical Engineering, 1998, (9): 62- 64
[9]   李裕超. 飞机部件轴孔柔顺装配系统设计研究[D]. 杭州: 浙江大学, 2016.
LI Yu-chao. Research on peg-hole compliant assembly system of aircraft components [D]. Hangzhou: Zhejiang University, 2016.
[10]   彭商贤, 金佐中 机器人柔顺装配的几何及力学分析研究[J]. 机械工程学报, 1995, (6): 53- 60
PENG Shang-xian, JIN Zuo-zhong Research on geometric and mechanical analysis of robot compliant assembly[J]. Chinese Journal of Mechanical Engineering, 1995, (6): 53- 60
doi: 10.3321/j.issn:0577-6686.1995.06.015
[11]   DU K L, ZHANG B B, HUANG X, et al. Dynamic analysis of assembly process with passive compliance for robot manipulators[C]// Computational Intelligence in Robotics and Automation Proceedings. Kobe: IEEE, 2003: 1168-1173.
[12]   CHEN Y Z, XIE F G, LIU X J, et al Error modeling and sensitivity analysis of a parallel robot with SCARA (selective compliance assembly robot arm) motions[J]. Chinese Journal of Mechanical Engineering, 2014, 27 (4): 693- 702
doi: 10.3901/CJME.2014.0423.082
[13]   WHITNEY D E Quasi-static assembly of compliantly supported rigid parts[J]. Journal of Dynamic Systems Measurement and Control, 1982, 104 (2): 65- 77
[14]   费燕琼, 赵锡芳 基于凸多面体边界元的接触状态判断[J]. 机械工程学报, 2005, 41 (1): 50- 53
FEI Yan-qiong, ZHAO Xi-fang Judging assembly contact states based on boundary components of convex polyhedron[J]. Chinese Journal of Mechanical Engineering, 2005, 41 (1): 50- 53
doi: 10.3321/j.issn:0577-6686.2005.01.011
[15]   STURGES R, LAOWATTANA S Design of an orthogonal compliance for polygonal peg insertion[J]. Journal of Mechanical Design, 1996, 118 (3): 106- 114
[16]   HOGAN N Impedance control: an approach to manipulation: Part I-Theory[J]. Journal of Dynamic Systems Measurement and Control, 1985, 107: 1- 24
doi: 10.1115/1.3140702
[17]   SINGH H P, SUKAVANAM N Stability analysis of robust adaptive hybrid position/force controller for robot manipulators using neural network with uncertainties[J]. Neural Computing and Applications, 2012, 22 (8): 1745- 1755
doi: 10.1007%2Fs00521-012-0966-6
[18]   WHITNEY D E, ROURKE J Mechanical behavior and design equations for elastomer shear pad remote center compliances[J]. Journal of Dynamic Systems, Measurement, and Control, 1986, 108 (3): 223- 232
doi: 10.1115/1.3143771
[19]   CUTKOSKY M, WRIGHT P Active control of a compliant wrist in manufacturing tasks[J]. Journal of Manufacturing Science and Engineering, 1986, 108 (1): 36- 43
[20]   龚正. 面向热室的聚变堆内部器件清洗去污遥操作装置关键技术研究[D]. 合肥: 中国科学技术大学, 2016.
GONG Zheng. Research on key technologies of cleaning decontaminationremote handling equipment for fusion reactor in-vesselcomponents in hot cell[D]. Hefei: University of Science and Technology of China, 2016.
[1] Tian-ze HAO,Hua-ping XIAO,Shu-hai LIU,Chao ZHANG,Hao MA. Research status of integrated intelligent soft robots[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 229-243.
[2] Da-peng BAI,Bin ZHANG,Hao-cen HONG,Yang LI,Qing-hua JI,Hua-yong YANG. Biological 3D printer and topography detection of printing model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 289-298.
[3] Lei GUO,Xiu-fen ZHANG. Remanufacturing parallel disassembly sequence planning method driven by multiple failures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2233-2246.
[4] Sarina,Shu-you ZHANG,Le-miao QIU,Li-chun ZHANG. Schematic design of mechanism system based on transmission affordance evaluation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2179-2189.
[5] Yun-kai GAO,Chao MA,Zhe LIU,Ya-nan XU. Stress-based topology optimization based on global measure of distort energy density[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2169-2178.
[6] Kai-yuan SU,Zhi-gang XU,Jian-feng ZHU,Wei-min LIU. Dismantling equipment design for scrap product based on Petri net[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1795-1804.
[7] Hao CHEN,Xin-jie WANG,Jiong WANG,Zhan-wen XI,Yun CAO. Optimization and design of micro-electro-thermal actuator based on Kriging model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1490-1496.
[8] Yun-qing HU,Qing-ying QIU,Xiu YU,Jian-wei WU. Semi-supervised patent text classification method based on improved Tri-training algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 331-339.
[9] Peng ZHANG,Xiao-jian LIU,Shu-you ZHANG,Le-miao QIU,Guo-dong YI. Sparse hybrid uncertain variable optimization method and application[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 435-443.
[10] LI Te,Rui Zhi yuan,LEI Chun li,GUO Jun feng,HU Chi bing. Simulation of thermal characteristics of high speed spindle considering air gap variation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 941-948.
[11] JI Yu,QIU Qing ying,FENG Pei en,HUANG Hao. Extraction and utilization of design knowledge in international patent classification[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 412-418.
[12] LV Mao yin, XU Yue tong, YE Guo yun,YAO Xin hua. Optimal design of asymmetric steering mechanism based on quantum behaved particle swarm optimization algorithm[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 218-223.
[13] CHEN Shi, YANG Zhi yuan, SUN Ling yun, LOU Yun. Research on design knowledge analytical method during sketching —— combining acoustic energy feature and creative segment theory[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2073-2082.
[14] WU Chen-rui, ZHANG Shu-you, LIU Xiao-jian. Product scheme design evaluation based on coupling network analysis of cluster parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1495-1502.
[15] CHEN Jin, QING Fei, PANG Xiao-ping. Optimal design of backhoe hydraulic excavator working device based on synthesis digging[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1654-1660.