|
|
Research status of integrated intelligent soft robots |
Tian-ze HAO( ),Hua-ping XIAO*( ),Shu-hai LIU,Chao ZHANG,Hao MA |
College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China |
|
|
Abstract Integrated intelligent soft robots were reviewed from the aspects of actuation, materials, manufacturing, modes of motion, sensing and control, and the complementary relationships between integrated intelligent soft robots, new flexible sensors and machine learning were discussed. The problems in actuation, modeling and control were also analyzed. Integrated intelligent soft robots can be divided into fluidic driven, intelligent material driven and chemical reaction driven according to different driving methods. The energy source determines the integration method and the movement ability of the soft robots, and the selection of driving methods is mostly based on bionic inspiration. Flexible sensors and machine learning, as reliable tools for soft robots to improve motion capabilities and optimize control methods, will promote integrated intelligent soft robots into practical application. As the future development direction of soft robot, integrated intelligent soft robots that realizes controllable and predictable autonomous motion capabilities imitating the flexible postures of animals have broad application prospects in field exploration.
|
Received: 16 October 2020
Published: 09 March 2021
|
|
Fund: 国家自然科学基金资助项目(51605492,51575529);中国石油大学(北京)科学基金资助项目(2462020XKJS01) |
Corresponding Authors:
Hua-ping XIAO
E-mail: 2019310308@student.cup.edu.cn;hxiao@cup.edu.cn
|
集成化智能软体机器人研究进展
从驱动方式、材料与制造、运动方式、传感与控制方面对集成化智能软体机器人进行综述,讨论集成化软体机器人与新型柔性传感器、机器学习之间相辅相成的关系,分析在驱动方式、建模与控制方面存在的问题. 根据驱动方式的不同,可以将集成化智能软体机器人分为流体驱动、智能材料驱动和化学反应驱动,能量来源决定软体机器人的集成方式和运动能力,而驱动方式的选用多是以仿生灵感为指导原则. 柔性传感器和机器学习作为软体机器人提高运动能力、优化控制方式的可靠工具,将推动智能软体机器人进入实际应用阶段. 实现可控和可预测自主运动能力的集成化智能软体机器人是软体机器人未来的发展方向,在运动方式上模仿动物的灵活姿态,在未知环境勘探领域有广阔应用前景.
关键词:
软体机器人,
集成化,
驱动方式,
仿生学,
智能结构
|
|
[1] |
王成军, 李帅 软体机器人研究现状[J]. 微纳电子技术, 2019, 56 (12): 948- 955 WANG Cheng-jun, LI Shuai Research status of soft robots[J]. Micronanoelectronic Technology, 2019, 56 (12): 948- 955
|
|
|
[2] |
MARTINEZ R V, FISH C R, CHEN X, et al Elastomeric origami: programmable paper: elastomer composites as pneumatic actuators[J]. Advanced Functional Materials, 2012, 22 (7): 1376- 1384
doi: 10.1002/adfm.201102978
|
|
|
[3] |
TRIVEDI D, RAHN C D, KIER W M, et al Soft robotics: biological inspiration, state of the art, and future research[J]. Applied Bionics and Biomechanics, 2008, 5 (3): 99- 117
doi: 10.1155/2008/520417
|
|
|
[4] |
BAER J I. Material handling apparatus and the like: US3343864 [P]. 1967–09–26.
|
|
|
[5] |
ROY L O, KENT O. Gripping device: US3601442 [P]. 1971–08-24.
|
|
|
[6] |
SUZUMORI K, ⅡKURA S, TANAKA H. Development of flexible microactuator and its applications to robotic mechanisms [C]// 1991 IEEE International Conference on Robotics and Automation. California: IEEE, 1991: 1622-1627.
|
|
|
[7] |
KOHICHI S. Gripping actuator with independently flexible cylinders: US5156081 [P]. 1992–10-20.
|
|
|
[8] |
YAMAGUCHI A, TAKEMURA K, YOKOTA S, et al A robot hand using electro-conjugate fluid: grasping experiment with balloon actuators inducing a palm motion of robot hand[J]. Sensors and Actuators A: Physical, 2012, 174: 181- 188
doi: 10.1016/j.sna.2011.11.036
|
|
|
[9] |
NⅡYAMA R, SUN X, SUNG C, et al Pouch motors: printable soft actuators integrated with computational design[J]. Soft Robotics, 2015, 2 (2): 59- 70
doi: 10.1089/soro.2014.0023
|
|
|
[10] |
DEIMEL R, BROCK O. A compliant hand based on a novel pneumatic actuator [C]// IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013: 2047-2053.
|
|
|
[11] |
ZHANG N, GE L, XU H, et al 3D printed, modularized rigid-flexible integrated soft finger actuators for anthropomorphic hands[J]. Sensors and Actuators A: Physical, 2020, 312: 1- 9
|
|
|
[12] |
DEIMEL R, BROCK O A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. International Journal of Robotics Research, 2016, 35 (1–3): 161- 185
doi: 10.1177/0278364915592961
|
|
|
[13] |
SHEPHERD R F, ILIEVSKI F, CHOI W, et al Multigait soft robot[J]. Proceedings of the National Academy of Sciences, 2011, 108 (51): 20400- 20403
doi: 10.1073/pnas.1116564108
|
|
|
[14] |
ISHIDA M, DROTMAN D, SHIH B, et al Morphing structure for changing hydrodynamic characteristics of a soft underwater walking robot[J]. IEEE Robotics and Automation Letters, 2019, 4 (4): 4163- 4169
doi: 10.1109/LRA.2019.2931263
|
|
|
[15] |
TAKUYA U, MASAHIRO S, YOSHIHIRO K Caterpillar-inspired crawling robot using both compression and bending deformations[J]. IEEE Robotics and Automation Letters, 2019, 4 (2): 670- 676
|
|
|
[16] |
GU G, ZOU J, ZHAO R, et al Soft wall-climbing robots[J]. Science Robotics, 2018, 3 (25): 1- 12
|
|
|
[17] |
SINGH G, KRISHNAN G Designing fiber-reinforced soft actuators for planar curvilinear shape matching[J]. Soft Robotics, 2020, 7 (1): 109- 121
doi: 10.1089/soro.2018.0169
|
|
|
[18] |
LIAO B, ZANG H, CHEN M, et al Soft rod-climbing robot inspired by winding locomotion of snake[J]. Soft Robotics, 2020, 7 (4): 500- 511
doi: 10.1089/soro.2019.0070
|
|
|
[19] |
LIN H, LEISK G G, TRIMMER B GoQBot: a caterpillar-inspired soft-bodied rolling robot[J]. Bioinspiration and Biomimetics, 2011, 6 (2): 26007
doi: 10.1088/1748-3182/6/2/026007
|
|
|
[20] |
TANG Y, CHI Y, SUN J, et al Leveraging elastic instabilities for amplified performance: spine-inspired high-speed and high-force soft robots[J]. Science Advances, 2020, 6 (19): z6912
doi: 10.1126/sciadv.aaz6912
|
|
|
[21] |
XIE Z, DOMEL A G, AN N, et al Octopus arm-inspired tapered soft actuators with suckers for improved grasping[J]. Soft Robotics, 2020, 7 (5): 639- 648
doi: 10.1089/soro.2019.0082
|
|
|
[22] |
SHEN Z, ZHONG H, XU E, et al An underwater robotic manipulator with soft bladders and compact depth-independent actuation[J]. Soft Robotics, 2020, 7 (5): 535- 549
doi: 10.1089/soro.2019.0087
|
|
|
[23] |
TOLLEY M T, SHEPHERD R F, MOSADEGH B, et al A resilient, untethered soft robot[J]. Soft Robotics, 2014, 1 (3): 213- 223
doi: 10.1089/soro.2014.0008
|
|
|
[24] |
MORIN S A, SHEPHERD R F, KWOK S W, et al Camouflage and display for soft machines[J]. Science, 2012, 337 (6096): 828- 832
doi: 10.1126/science.1222149
|
|
|
[25] |
KATZSCHMANN R K, DELPRETO J, MACCURDY R, et al Exploration of underwater life with an acoustically controlled soft robotic fish[J]. Science Robotics, 2018, 3 (16): eaar3449
doi: 10.1126/scirobotics.aar3449
|
|
|
[26] |
MARCHESE A D, ONAL C D, RUS D Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators[J]. Soft Robotics, 2014, 1 (1): 75- 87
doi: 10.1089/soro.2013.0009
|
|
|
[27] |
KATZSCHMANN R K, MARCHESE A D, RUS D. Hydraulic autonomous soft robotic fish for 3D swimming [C]// International Symposium on Experimental Robotics. Tokyo: ISER, 2016: 405-420.
|
|
|
[28] |
PATTERSON Z J, SABELHAUS A P, CHIN K, et al. An untethered brittle star robot for closed-loop underwater locomotion [EB/OL]. [2020–3–30]. https://arxiv.org/abs/2003.13529v1.
|
|
|
[29] |
张忠强, 邹娇, 丁建宁, 等 软体机器人驱动研究现状[J]. 机器人, 2018, 40 (5): 648- 659 ZHANG Zhong-qiang, ZOU Jiao, DING Jian-ning, et al Research status of the soft robot driving[J]. Robot, 2018, 40 (5): 648- 659
|
|
|
[30] |
费燕琼, 庞武, 于文博 气压驱动软体机器人运动研究[J]. 机械工程学报, 2017, 53 (13): 14- 18 FEI Yan-qiong, PANG Wu, YU Wen-bo Movement of air-driven soft robot[J]. Journal of Mechanical Engineering, 2017, 53 (13): 14- 18
doi: 10.3901/JME.2017.13.014
|
|
|
[31] |
BENJAMIN G, DOMINIEK R, SATOSHI K , et al Elastic inflatable actuators for soft robotic applications[J]. Advanced Materials, 2017, 29 (43): 1604977
|
|
|
[32] |
ONAL C D, RUS D Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot[J]. Bioinspiration and Biomimetics, 2013, 8 (2): 26003
doi: 10.1088/1748-3182/8/2/026003
|
|
|
[33] |
WAYNELOVICH J, FREY T, BALJON A, et al Versatile and dexterous soft robotic leg system for untethered operations[J]. Soft Robotics, 2016, 3 (2): 64- 70
doi: 10.1089/soro.2016.0001
|
|
|
[34] |
RAFSANJANI A, ZHANG Y, LIU B, et al Kirigami skins make a simple soft actuator crawl[J]. Science Robotics, 2018, 3 (15): 7555
doi: 10.1126/scirobotics.aar7555
|
|
|
[35] |
FAN J, WANG S, YU Q, et al Swimming performance of the frog-inspired soft robot[J]. Soft Robotics, 2020, 7 (5): 615- 626
doi: 10.1089/soro.2019.0094
|
|
|
[36] |
HOU T G, YANG X B, WANG T M, et al Locomotor transition: how squid jet from water to air[J]. Bioinspiration and Biomimetics, 2020, 15 (3): 36014
doi: 10.1088/1748-3190/ab784b
|
|
|
[37] |
HOU T, YANG X, SU H, et al. Design, fabrication and morphing mechanism of soft fins and arms of a squid-like aquatic-aerial vehicle with morphology trade off [C]// International Conference on Robotics and Biomimetics. Dali: IEEE, 2019: 1020-1026.
|
|
|
[38] |
李海利, 姚建涛, 周盼, 等 无系留大负载软体抓持机器人研究发展综述[J]. 机械工程学报, 2020, 56 (19): 28- 42 LI Hai-li, YAO Jian-tao, ZHOU Pan, et al Untethered, high-load soft gripping robots: a review[J]. Journal of Mechanical Engineering, 2020, 56 (19): 28- 42
doi: 10.3901/JME.2020.19.028
|
|
|
[39] |
THOMAS M, ERIC M, CATHERINE E, et al 3D printed self-adhesive PEGDA-PAA hydrogels as modular components for soft actuators and microfluidics[J]. Polymer Chemistry, 2019, 10 (16): 2015- 2028
doi: 10.1039/C9PY00211A
|
|
|
[40] |
CANGIALOSI A, YOON C K, LIU J, et al DNA sequence-directed shape change of photopatterned hydro gels via high-degree swelling[J]. Science, 2017, 357 (6356): 1126- 1130
doi: 10.1126/science.aan3925
|
|
|
[41] |
ZHAO J W, ZHANG J M, DAVID M, et al Soft and fast hopping-running robot with speed of six times its body length per second[J]. Soft Robotics, 2019, 6 (6): 713- 721
doi: 10.1089/soro.2018.0098
|
|
|
[42] |
李铁风, 李国瑞, 梁艺鸣, 等 软体机器人结构机理与驱动材料研究综述[J]. 力学学报, 2016, 48 (4): 756- 766 LI Tie-feng, LI Guo-rui, LIANG Yi-ming, et al Rebiew of materials and structures in soft robotics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48 (4): 756- 766
doi: 10.6052/0459-1879-16-159
|
|
|
[43] |
WANG Z, WANG Y, LI J, et al. A micro biomimetic manta ray robot fish actuated by SMA [C]// International Conference on Robotics and Biomimetics. Guilin: IEEE, 2009: 1809-1813.
|
|
|
[44] |
LOW K H, YANG J, PATTATHIL A P, et al. Initial prototype design and investigation of an undulating body by SMA [C]// International Conference on Automation Science and Engineering. Shanghai: IEEE, 2006: 472-477.
|
|
|
[45] |
AURELI M, KOPMAN V, PORFIRI M Free-locomotion of underwater vehicles actuated by ionic polymer metal composites[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15 (4): 603- 614
doi: 10.1109/TMECH.2009.2030887
|
|
|
[46] |
KAMAMICHI N, YAMAKITA M, ASAKA K, et al. A snake-like swimming robot using IPMC actuator/sensor [C]// International Conference on Robotics and Automation. Orlando: IEEE, 2006: 1812-1817.
|
|
|
[47] |
CHEN Z, UM T I, BART-SMITH H. Ionic polymer-metal composite enabled robotic manta ray [C]// Proceedings of Spie the International Society for Optical Engineering. San Diego: IEEE, 2011: 1-12.
|
|
|
[48] |
CHEN Z, UM T I, ZHU J, et al. Bio-inspired robotic cownose ray propelled by electroactive polymer pectoral fin [C]// International Mechanical Engineering Congress and Exposition. Denver: ASME, 2011: 1-8.
|
|
|
[49] |
ONAL C D, CHEN X, WHITESIDES G M, et al. Soft mobile robots with on-board chemical Pressure generation [C]// Robotics Research: The 15th International Symposium ISRR. Flagstaff: Springer, 2017: 525-540.
|
|
|
[50] |
BARTLETT N W, TOLLEY M T, OVERVELDE J T, et al A 3D-printed, functionally graded soft robot powered by combustion[J]. Science, 2015, 349 (6244): 161- 165
doi: 10.1126/science.aab0129
|
|
|
[51] |
SHEPHERD R F, STOKES A A, FREAKE J, et al Using explosions to power a soft robot[J]. Angewandte Chemie-International Edition, 2013, 52 (10): 2892- 2896
doi: 10.1002/anie.201209540
|
|
|
[52] |
WEHNER M, TRUBY R L, FITZGERALD D J, et al An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536 (7617): 451- 455
doi: 10.1038/nature19100
|
|
|
[53] |
AUBIN C A, CHOUDHURY S, JERCH R, et al Electrolytic vascular systems for energy-dense robots[J]. Nature, 2019, 571 (7763): 51- 57
doi: 10.1038/s41586-019-1313-1
|
|
|
[54] |
LOEPFE M, SCHUMACHER C M, LUSTENBERGER U B, et al An untethered, jumping roly-poly soft robot driven by combustion[J]. Soft Robotics, 2015, 2 (1): 33- 41
doi: 10.1089/soro.2014.0021
|
|
|
[55] |
MICHAEL T T, ROBERT F S, MICHAEL K, et al. An untethered jumping soft robot [C]// International Conference on Intelligent Robots and Systems. Chicago: IEEE, 2014: 564-566.
|
|
|
[56] |
孙沂琳, 张秋菊, 陈宵燕 软体驱动器研究综述[J]. 机械设计, 2019, 36 (2): 5- 18 SUN Yi-lin, ZHANG Qiu-ju, CHEN Xiao-yan Overview of soft-bodied actuators[J]. Journal of Machine Design, 2019, 36 (2): 5- 18
|
|
|
[57] |
YUK H, LIN S, MA C, et al Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water[J]. Nature Communications, 2017, 8 (1): 1- 12
doi: 10.1038/s41467-016-0009-6
|
|
|
[58] |
ACOME E, MITCHELL S K, MORRISSEY T G, et al Hydraulically amplified self-healing electrostatic actuators with muscle-like performance[J]. Science, 2018, 359 (6371): 61- 65
doi: 10.1126/science.aao6139
|
|
|
[59] |
李海, 观姗姗, 赵树高 介电弹性体智能材料的研究进展[J]. 特种橡胶制品, 2016, 37 (2): 66- 72 LI Hai, GUAN Shan-shan, ZHAO Shu-gao Research progress of dielectric elastomer smart materials[J]. Special Purpose Rubber Products, 2016, 37 (2): 66- 72
|
|
|
[60] |
PEELE B, WALLIN T, ZHAO H, et al 3D printing antagonistic systems of artificial muscle using projection stereolithography[J]. Bioinspiration and Biomimetics, 2015, 10 (5): 55003
doi: 10.1088/1748-3190/10/5/055003
|
|
|
[61] |
MCMAHAN W, CHITRAKARAN V, CSENCSITS M, et al. Field trials and testing of the OctArm continuum manipulator [C]// International Conference on Robotics and Automation. Orlando: IEEE, 2006.
|
|
|
[62] |
FEI Y, WANG J, PANG W A novel fabric-based versatile and stiffness-tunable soft gripper integrating soft pneumatic fingers and wrist[J]. Soft Robotics, 2019, 6 (1): 1- 20
doi: 10.1089/soro.2018.0015
|
|
|
[63] |
GALLOWAY K, BECKER K, PHILLIPS B, et al Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robotics, 2016, 3 (1): 23- 33
doi: 10.1089/soro.2015.0019
|
|
|
[64] |
GALLOWAY K, POLYGERINOS P, WALSH C, et al. Mechanically programmable bend radius for fiber-reinforced soft actuators [C]// International Conference on Advanced Robotics. Montevideo: IEEE, 2013: 1-6.
|
|
|
[65] |
POLYGERINOS P, WANG Z, OVERVELDE J T B, et al Modeling of soft fiber-reinforced bending actuators[J]. IEEE Transactions on Robotics, 2015, 31 (3): 778- 789
doi: 10.1109/TRO.2015.2428504
|
|
|
[66] |
PAEZ L, AGARWAL G, PAIK J Design and analysis of a soft pneumatic actuator with origami shell reinforcement[J]. Soft Robotics, 2016, 3 (3): 109- 119
doi: 10.1089/soro.2016.0023
|
|
|
[67] |
QIN L, LIANG X, HUANG H, et al A versatile soft crawling robot with rapid locomotion[J]. Soft Robotics, 2019, 6 (4): 455- 467
doi: 10.1089/soro.2018.0124
|
|
|
[68] |
FENG H, SUN Y, TODD P A, et al Body wave generation for anguilliform locomotion using a fiber-reinforced soft fluidic elastomer actuator array toward the development of the eel-inspired underwater soft robot[J]. Soft Robotics, 2020, 7 (2): 233- 250
doi: 10.1089/soro.2019.0054
|
|
|
[69] |
HUANG X, KUMAR K, JAWED M K, et al Chasing biomimetic locomotion speeds: creating untethered soft robots with shape memory alloy actuators[J]. Science Robotics, 2018, 3 (25): 1- 3
|
|
|
[70] |
LI T, LI G, LIANG Y, et al Fast-moving soft electronic fish[J]. Science Advance, 2017, 3 (4): e1602045
|
|
|
[71] |
SEOK S, ONAL C D, CHO K, et al Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18 (5): 1485- 1497
doi: 10.1109/TMECH.2012.2204070
|
|
|
[72] |
YANG T, XIAO Y H, ZHANG Z, et al A soft artificial muscle driven robot with reinforcement learning[J]. Scientific Reports, 2018, 8 (1): 14518
doi: 10.1038/s41598-018-32757-9
|
|
|
[73] |
王海涛, 彭熙凤, 林本末 软体机器人研究进展[J]. 华南理工大学学报:自然科学版, 2020, 48 (2): 94- 106 Wang Hai-tao, Peng Xi-feng, LIN Ben-mo Research development of soft robots[J]. Journal of South China University of Technology: Natural Science Edition, 2020, 48 (2): 94- 106
|
|
|
[74] |
SIFERT E, REYSSAT E, BICO J, et al Bio-inspired pneumatic shape-morphing elastomers[J]. Nature Materials, 2019, 18 (1): 24- 28
doi: 10.1038/s41563-018-0219-x
|
|
|
[75] |
SHAHID Z, GLATMAN A L, RYU S C Design of a soft composite finger with adjustable joint stiffness[J]. Soft Robotics, 2019, 6 (6): 722- 732
doi: 10.1089/soro.2018.0148
|
|
|
[76] |
RANZANI T, RUSSO S, BARTLETT N W, et al Increasing the dimensionality of soft microstructures through injection-induced self-folding[J]. Advanced Materials, 2018, 30 (38): 1802739
doi: 10.1002/adma.201802739
|
|
|
[77] |
MARCHESE A D, KATZSCHMANN R K, RUS D A recipe for soft fluidic elastomer robots[J]. Soft Robotics, 2015, 2 (1): 7- 25
doi: 10.1089/soro.2014.0022
|
|
|
[78] |
WALLIN T J, PIKUL J, SHEPHERD R F 3D printing of soft robotic systems[J]. Nature Reviews Materials, 2018, 3 (6): 84- 100
doi: 10.1038/s41578-018-0002-2
|
|
|
[79] |
CHEN W, XIONG C, LIU C, et al Fabrication and dynamic modeling of bidirectional bending soft actuator integrated with optical waveguide curvature sensor[J]. Soft Robotics, 2019, 6 (4): 495- 506
doi: 10.1089/soro.2018.0061
|
|
|
[80] |
YAP H K, NG H Y, YEOW C High-force soft printable pneumatics for soft robotic applications[J]. Soft Robotics, 2016, 3 (3): 144- 158
doi: 10.1089/soro.2016.0030
|
|
|
[81] |
KONISHI S. Small, soft, safe micromachine for minimally invasive surgery [C]// International Meeting for Future of Electron Devices. Osaka: IEEE, 2011: 20-21.
|
|
|
[82] |
ZHANG B, FAN Y, YANG P, et al Worm-like soft robot for complicated tubular environments[J]. Soft Robotics, 2019, 6 (3): 399- 413
doi: 10.1089/soro.2018.0088
|
|
|
[83] |
DOLLAR A M, HOWE R D A robust compliant grasper via shape deposition manufacturing[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11 (2): 154- 161
doi: 10.1109/TMECH.2006.871090
|
|
|
[84] |
CHAM J G, BAILEY S A, CLARK J E, et al Fast and robust: hexapedal robots via shape deposition manufacturing[J]. The International Journal of Robotics Research, 2002, 21 (10): 869- 882
doi: 10.1177/0278364902021010837
|
|
|
[85] |
BAILEY S A, CHAM J G, CUTKOSKY M R, et al. Biomimetic robotic mechanisms via shape deposition manufacturing [C]// The 9th International Symposium of Robotics Research. SNOWBIRD: IEEE, 1999: 1-7.
|
|
|
[86] |
MAJIDI C Soft robotics: a perspective: current trends and prospects for the future[J]. Soft Robotics, 2014, 1 (1): 5- 11
doi: 10.1089/soro.2013.0001
|
|
|
[87] |
CHU W, LEE K, SONG S, et al Review of biomimetic underwater robots using smart actuators[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13 (7): 1281- 1292
doi: 10.1007/s12541-012-0171-7
|
|
|
[88] |
YU J, WANG M, DONG H, et al Motion control and motion coordination of bionic robotic fish: a review[J]. Journal of Bionic Engineering, 2018, 15 (4): 579- 598
doi: 10.1007/s42235-018-0048-2
|
|
|
[89] |
RUS D, TOLLEY M T Design, fabrication and control of soft robots[J]. Nature, 2015, 521 (7553): 467- 475
doi: 10.1038/nature14543
|
|
|
[90] |
JUNGHWAN B, YOONTAEK L, JAEYOUNG Y, et al Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots[J]. Science Robotics, 2018, 3 (18): 9020
doi: 10.1126/scirobotics.aas9020
|
|
|
[91] |
PEDRO P, SYDNEY S, MATEI C Data-driven super-resolution on a tactile dome[J]. IEEE Robotics and Automation Letters, 2018, 3 (3): 1434- 1441
doi: 10.1109/LRA.2018.2800081
|
|
|
[92] |
CHRIS L, JOSEF S, ROSS K, et al A deformable interface for human touch recognition using stretchable carbon nanotube dielectric elastomer sensors and deep neural networks[J]. Soft Robotics, 2019, 6 (5): 611- 620
doi: 10.1089/soro.2018.0086
|
|
|
[93] |
SUBRAMANIAN S, PETR K, Li U Z, et al Learning the signatures of the human grasp using a scalable tactile glove[J]. Nature, 2019, 569 (7758): 698- 702
doi: 10.1038/s41586-019-1234-z
|
|
|
[94] |
徐丰羽, 孟凡昌, 范保杰, 等 软体机器人驱动、建模与应用研究综述[J]. 南京邮电大学学报:自然科学版, 2019, 39 (3): 64- 75 XU Feng-yu, MENG Fan-chang, FAN Bao-jie, et al Review of driving methods, modeling and application in soft robots[J]. Journal of Nanjing University of Posts and Telecommunications: Natural Science, 2019, 39 (3): 64- 75
|
|
|
[95] |
WEBSTER R J, JONES B A Design and kinematic modeling of constant curvature continuum robots: a review[J]. The International Journal of Robotics Research, 2010, 29 (13): 1661- 1683
doi: 10.1177/0278364910368147
|
|
|
[96] |
BOSWORTH W, KIM S, HOGAN N. The MIT super mini cheetah: a small, low-cost quadrupedal Robot for dynamic locomotion [C]// International Symposium on Safety, Security, and Rescue Robotics. West Lafayette: IEEE, 2015: 1-8.
|
|
|
[97] |
POLYGERINOS P, GALLOWAY K C, SANAN S, et al. EMG controlled soft robotic glove for assistance during activities of daily living [C]// International Conference on Rehabilitation Robotics. Singapore: IEEE, 2015: 55-60.
|
|
|
[98] |
HAWKES E W, BLUMENSCHEIN L H, GREER J D, et al A soft robot that navigates its environment through growth[J]. Science Robotics, 2017, 2 (8): eaan3028
doi: 10.1126/scirobotics.aan3028
|
|
|
[99] |
POLYGERINOS P, GALLOWAY K C, SAVAGE E, et al. Soft robotic glove for hand rehabilitation and task specific training [C]// International Conference on Robotics and Automation. Seattle: IEEE, 2015: 2913-2919.
|
|
|
[100] |
POLYGERINOS P, WANG Z, GALLOWAY K C, et al Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics and Autonomous Systems, 2015, 73: 135- 143
doi: 10.1016/j.robot.2014.08.014
|
|
|
[101] |
ZHAO H, JALVING J, HUANG R, et al A helping hand: soft orthosis with integrated optical strain sensors and emg control[J]. IEEE Robotics and Automation Magazine, 2016, 23 (3): 55- 64
doi: 10.1109/MRA.2016.2582216
|
|
|
[102] |
CHEN G, PHAM M T, REDARCE T Sensor-based guidance control of a continuum robot for a semi-autonomous colonoscopy[J]. Robotics and Autonomous Systems, 2009, 57 (6/7): 712- 722
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|