Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (1): 1-16    DOI: 10.3785/j.issn.1008-973X.2020.01.001
Mechanical Engineering     
Research progress and related applications of shape memory polymers in four-dimensional printing technology
Tian-ze HAO(),Hua-ping XIAO*(),Shu-hai LIU,Jian-feng GU
College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China
Download: HTML     PDF(3769KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Four-dimensional (4D) printing technology undergoes fast development in recent years since 4D-printed structures have increased deformability and designability compared to 3D-printed static structure. Recent developments and printing principle of 4D printing technology were reviewed. Four popular printing methods, namely fused deposition modeling, stereo lithography apparatus, polyJet and direct-writing technology, as well as their different demands for materials, were summarized. From the perspective of different external excitations, deformation mode, mechanism and recovery degree of shape memory polymers were analyzed and summarized. Key scientific difficulties and future development directions of shape memory polymers were discussed. 4D printed shape memory intelligent structures using shape memory polymers were investigated in research fields such as minimally invasive biomedicine, robotics, and flexible electronics manufacturing, presenting great potential application of 4D-printed structures in related fields.



Key words4D printing      shape memory polymer      drive mode      smart structure     
Received: 08 September 2019      Published: 05 January 2020
CLC:  TH 145  
Corresponding Authors: Hua-ping XIAO     E-mail: 2019310308@student.cup.edu.cn;hxiao@cup.edu.cn
Cite this article:

Tian-ze HAO,Hua-ping XIAO,Shu-hai LIU,Jian-feng GU. Research progress and related applications of shape memory polymers in four-dimensional printing technology. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 1-16.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.01.001     OR     http://www.zjujournals.com/eng/Y2020/V54/I1/1


形状记忆聚合物在4D打印技术下的研究及应用

为了打破传统3D打印的静止约束,增加打印结构的可变形性和可设计性,4D打印的相关研究逐渐兴起. 综述了4D打印技术的发展和原理,总结了熔融沉积技术、立体光固化成型技术、聚合物喷射技术和直写技术这4种常见的打印方式的工作方式以及它们对材料的不同需求. 从外界不同激励的角度,对形状记忆聚合物的变形方式、机理及回复程度等进行分析与总结,对形状记忆聚合物目前存在的关键科学难点和未来的发展方向进行总结. 使用形状记忆聚合物的4D打印形状记忆智能结构在微创生物医学、机器人、柔性电子制造等研究领域已经有了应用,并表现出良好前景.


关键词: 4D打印,  形状记忆聚合物,  驱动方式,  智能结构 
Fig.1 Similarities and differences between 3D printing and 4D printing
Fig.2 Schematic diagram of printing mode
Fig.3 Schematic diagram of thermal deformation process of SMP
Fig.4 Two-dimensional layered SMP deformation effect
Fig.5 Deformation and application of composite structure of three kinds of materials
Fig.6 Three shapes of SMP system
Fig.7 Deformability and shape recovery capability of complex three-dimensional structures
Fig.8 Three-dimensional stress-strain-temperature relationship in thermomechanical cycle test
Fig.9 4D printing rope deformation in water and cube self-folding
Fig.10 Complex printing structure swells with water
Fig.11 Humidity response structure recovery process
Fig.12 Electrical response structure experimental process
Fig.13 Deformation of SMP containing conductive fiber
Fig.14 Magnetic response SMP deformation process in magnetic field
Fig.15 Deformation and recovery process of SMP sunflower under illumination
Fig.16 LCE elastomer light response process
Fig.17 LCE elastomer rubbing direction affects recovery process
Fig.18 Scan tracheal stent tree, model and actual sten
Fig.19 Microvoid scaffold for cell culture
Fig.20 Worm robot deployment structure and forward diagram
Fig.21 Software robot gripping process and machine finger
Fig.22 Application of SMP in field of flexible electronics
Fig.23 4D printing moisture wicking clothing
[1]   崔世强, 李兰芬, 崔波 快速成形制造技术的基本原理与方法[J]. 河北工业科技, 1999, 16 (4): 56- 59
CUI Shi-qiang, LI Lan-fen, CUI Bo The basic principle and method of rapid prototyping technology[J]. Hebei Journal of Industrial Science and Technology, 1999, 16 (4): 56- 59
doi: 10.3969/j.issn.1008-1534.1999.04.008
[2]   李涤尘, 刘佳煜, 王延杰, 等 4D打印-智能材料的增材制造技术[J]. 机电工程技术, 2014, 43 (05): 1- 9
LI Di-chen, LIU Jia-yu, WANG Yan-jie, et al 4D printing - additive manufacturing technology for smart materials[J]. Mechanical and Electrical Engineering Technology, 2014, 43 (05): 1- 9
doi: 10.3969/j.issn.1009-9492.2014.05.001
[3]   李小丽, 马剑雄, 李萍, 等 3D打印技术及应用趋势[J]. 自动化仪表, 2014, 35 (1): 1- 5
LI Xiao-li, MA Jian-xiong, LI Ping, et al 3D printing technology and application trend[J]. Process Automation Instrumentation, 2014, 35 (1): 1- 5
doi: 10.3969/j.issn.1000-0380.2014.01.001
[4]   ELENA B, ANDREA G, LUCA I, et al 3D printing technique applied to rapid casting[J]. Rapid Prototyping Journal, 2007, 13 (3): 148- 155
doi: 10.1108/13552540710750898
[5]   MOMENI F, SEYED M M H N, XUN L, et al A review of 4D printing[J]. Materials and Design, 2017, 122: 42- 79
[6]   LENG J S, LAN X, LIU Y J, et al Shape-memory polymers and their composites: stimulus methods and applications[J]. Progress in Materials Science, 2011, 56 (7): 1077- 1135
doi: 10.1016/j.pmatsci.2011.03.001
[7]   王亚男, 王芳辉, 汪中明, 等 4D打印的研究进展及应用展望[J]. 航空材料学报, 2018, 38 (02): 70- 76
WANG Ya-nan, WANG Fang-hui, WANG Zhong-ming, et al Research progress and application prospect of 4D printing[J]. Journal of Aeronautical Materials, 2018, 38 (02): 70- 76
[8]   WU J J, HUANG L M, ZHAO Q, et al 4D printing: history and recent progress[J]. Chinese Journal of Polymer Science, 2018, 36 (05): 563- 575
doi: 10.1007/s10118-018-2089-8
[9]   ZHAO Q, QI H J, XIE T Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding[J]. Progress in Polymer Science, 2015, (49/50): 79- 120
[10]   ABRAHAMSON E, LAKE M, MUNSHI N, et al. Shape memory polymers for elastic memory composites [C] // AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Denver: AIAA, 2006.
[11]   MIAO S, ZHU W, CASTRO N J, et al Four-dimensional printing hierarchy Scaffolds with highly biocompatible smart polymers for tissue engineering applications[J]. Tissue Engineering Part C: Methods, 2016, 22 (10): 952- 963
doi: 10.1089/ten.tec.2015.0542
[12]   赵姝宁 生物医用形状记忆聚合物前沿进展[J]. 当代化工研究, 2019, (03): 190- 191
ZHAO Shu-ning Advances in biomedical shape memory polymers[J]. Contemporary Chemical Research, 2019, (03): 190- 191
doi: 10.3969/j.issn.1672-8114.2019.03.117
[13]   YU Z, ZHANG Q, LI L, et al Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes[J]. Advanced Materials, 2011, 23 (5): 664- 668
doi: 10.1002/adma.201003398
[14]   郑宁, 黄银, 赵骞, 等 面向柔性电子的形状记忆聚合物[J]. 中国科学: 物理学力学天文学, 2016, 46 (04): 8- 17
ZHENG Ning, HUANG Yin, ZHAO Qian, et al Shape memory polymer for flexible electrons[J]. Chinese Science: Physics, Mechanics and Astronomy, 2016, 46 (04): 8- 17
[15]   FELTON S M, TOLLEY M T, ONAL C D, et al. Robot self-assembly by folding: a printed inchworm robot [C] // 2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013.
[16]   GE Q, SAKHAEI A H, LEE H, et al Multimaterial 4D printing with tailorable shape memory polymers[J]. Scientific Reports, 2016, (6): 31110
[17]   胡金莲, 杨卓鸿 形状记忆高分子材料的研究及应用[J]. 印染, 2004, 30 (3): 44- 47
HU Jin-lian, YANG Zhuo-hong Research and application of shape memory polymer materials[J]. Dyeing and Finishing, 2004, 30 (3): 44- 47
doi: 10.3321/j.issn:1000-4017.2004.03.017
[18]   WANG W, YAO L, CHENG C Y, et al Harnessing the hygroscopic and biofl uorescent behaviors of genetically tractable microbial cells to design biohybrid wearables[J]. Science Advances, 2017, 3 (5): 1601984
doi: 10.1126/sciadv.1601984
[19]   CRUZ M F, BORILLE A V Decision methods application to compare conventional manufacturing process with metal additive manufacturing process in the aerospace industry[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 39 (1): 1- 17
[20]   LIU Y, YANG S F, LEONG K F, et al 3D printing of smart materials: a review on recent progresses in 4D printing[J]. Virtual and Physical Prototyping, 2015, 10 (3): 103- 122
doi: 10.1080/17452759.2015.1097054
[21]   唐通鸣, 张政, 邓佳文, 等 基于FDM的3D打印技术研究现状与发展趋势[J]. 化工新型材料, 2015, 43 (06): 228- 230
TANG Tong-ming, ZHANG Zheng, DENG Jia-wen, et al Research status and development trend of 3D printing technology based on FDM[J]. New Chemical Materials, 2015, 43 (06): 228- 230
[22]   YANG Y, CHEN Y, WEI Y, et al 3D printing of shape memory polymer for functional part fabrication[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84 (9-12): 2079- 2095
doi: 10.1007/s00170-015-7843-2
[23]   DUDEK P FDM 3D printing technology in manufacturing composite elements[J]. Archives of Metallurgy and Materials, 2013, 58 (4): 1415- 1418
doi: 10.2478/amm-2013-0186
[24]   HULL C W The birth of 3D printing[J]. Research-Technology Management, 2015, 58 (06): 25- 30
[25]   司马建高, 陈军, 李亚东 SLA 3D打印技术在熔模铸造中的应用[J]. 特种铸造有色合金, 2018, 38 (04): 379- 381
SIMA Jian-gao, CHEN Jun, LI Ya-dong SLA application of 3D printing technology in investment casting[J]. Special-cast and Non-ferrous Alloys, 2018, 38 (04): 379- 381
[26]   WU H, LI D, TANG Y, et al Rapid fabrication of alumina-based ceramic cores for gas turbine blades by stereolithography and gelcasting[J]. Journal of Materials Processing Technology, 2009, 209 (18/19): 5886- 5891
doi: 10.1016/j.jmatprotec.2009.07.002
[27]   王广春, 袁圆, 刘东旭 光固化快速成型技术的应用及其进展[J]. 航空制造技术, 2011, (06): 26- 29
WANG Guang-chun, YUAN Yuan, LIU Dong-xu Application and progress of light curing rapid prototyping technology[J]. Aeronautical Manufacturing Technology, 2011, (06): 26- 29
doi: 10.3969/j.issn.1671-833X.2011.06.001
[28]   TABI T, KOVACS N, SAJO I, et al Comparison of thermal, mechanical and thermomechanical properties of poly(lactic acid) injection-molded into epoxy-based rapid prototyped (polyjet) and conventional steel mold[J]. Journal of Thermal Analysis and Calorimetry, 2016, 123 (1): 349- 361
doi: 10.1007/s10973-015-4997-y
[29]   SINGH R, SINGH V Experimental investigations for rapid moulding solution of plastics using polyjet printing[J]. Materials Science Forum, 2011, 701: 15- 20
doi: 10.4028/www.scientific.net/MSF.701.15
[30]   SINGH R Process capability study of polyjet printing for plastic components[J]. Journal of Mechanical Science and Technology, 2011, 25 (4): 1011- 1015
doi: 10.1007/s12206-011-0203-8
[31]   陈燎, 唐兴伟, 周涵, 等 墨水直写、喷墨打印和激光直写技术及其在微电子器件中的应用[J]. 材料导报, 2017, 31 (09): 158- 164
CHEN Liao, TANG Xing-wei, ZHOU Han, et al Ink direct writing, inkjet printing and laser direct writing and their applications in microelectronic devices[J]. Materials Review, 2017, 31 (09): 158- 164
[32]   魏洪秋, 万雪, 刘彦菊, 等 4D打印形状记忆聚合物材料的研究现状与应用前景[J]. 中国科学: 技术科学, 2018, 48 (01): 2- 16
WEI Hong-qiu, WAN Xue, LIU Yan-ju, et al Research status and application prospect of 4D printing shape memory polymer materials[J]. Science China: Technical Science, 2018, 48 (01): 2- 16
[33]   GUO S Z, GOSSELIN F, GUERIN N, et al Solvent-cast three-dimensional printing of multifunctional Microsystems[J]. Small, 2013, 9 (24): 4118- 4122
doi: 10.1002/smll.201300975
[34]   TOBUSHI H, HARA H, YAMADA E, et al. Thermomechanical properties in a thin film of shape memory polymer of polyurethane series [C] // Smart Structures and Materials 1996: Smart Materials Technologies and Biomimetics. San Diego: SPIE, 1996: 483-491.
[35]   LIU Y, HAN C, TAN H, et al Thermal, mechanical and shape memory properties of shape memory epoxy resin[J]. Materials Science and Engineering: A (Structural Materials: Properties, Microstructure and Processing), 2010, 527 (10-11): 2510- 2514
[36]   MIAO S, ZHU W, CASTRO N J, et al 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate[J]. Scientific Reports, 2016, (6): 27226
[37]   GE Q, QI H J, DUNN M L Active materials by four-dimension printing[J]. Applied Physics Letters, 2013, 103 (13): 68- 225
[38]   NI Q Q, ZHANG C S, FU Y, et al Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites[J]. Composite Structures, 2007, 81 (2): 176- 184
doi: 10.1016/j.compstruct.2006.08.017
[39]   WU J, YUAN C, DING Z, et al Multi-shape active composites by 3D printing of digital shape memory polymers[J]. Scientific Reports, 2016, 6: 24224
doi: 10.1038/srep24224
[40]   XIE T, XIAO X, CHENG Y T Revealing triple-shape memory effect by polymer bilayers[J]. Macromolecular Rapid Communications, 2009, 30 (21): 1823- 1827
doi: 10.1002/marc.200900409
[41]   LUO X, MATHER P T Triple-shape polymeric composites (TSPCs)[J]. Advanced Functional Materials, 2010, 20 (16): 2649- 2656
doi: 10.1002/adfm.201000052
[42]   ZAREK M, LAYANI M, COOPERSTEIN I, et al 3D printing of shape memory polymers for flexible electronic devices[J]. Advanced Materials, 2016, 28 (22): 4166
doi: 10.1002/adma.201670148
[43]   HUANG L, JIANG R, WU J, et al Ultrafast digital printing toward 4D shape changing materials[J]. Advanced Materials, 2017, 29 (7): 1605390
doi: 10.1002/adma.201605390
[44]   NELSON B A, KING W P, GALL K Shape recovery of nanoscale imprints in a thermoset " shape memory” polymer[J]. Applied Physics Letters, 2005, 86 (10): 91
[45]   MA M, GUO L, ANSERSON D G, et al Bio-inspired polymer composite actuator and generator driven by water gradients[J]. Science, 2013, 339 (6116): 186- 189
doi: 10.1126/science.1230262
[46]   SKYLAR T 4D printing: multi-material shape change[J]. Architectural Design, 2014, 84 (1): 116- 121
doi: 10.1002/ad.1710
[47]   HUANG W M, YANG B, AN L, et al Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism[J]. Applied Physics Letters, 2005, 86 (11): 114105- 114105
doi: 10.1063/1.1880448
[48]   SKYLAR T. The emergence of " 4D printing”[EB/OL]. [2019-09-22]. https://www.ted.com/talks/skylar_tibbits_the_emergence_of_4d_printing.
[49]   GLADMAN S A, MATSUMOTO E A, NUZZO R G, et al Biomimetic 4D printing[J]. Nature Materials, 2016, (15): 413- 418
[50]   MAO Y, DING Z, YUAN C, et al 3D printed reversible shape changing components with stimuli responsive materials[J]. Scientific Reports, 2016, (6): 24761
[51]   NAFICY S, GATELY R, GORKIN R, et al 4D printing of reversible shape morphing hydrogel structures[J]. Macromolecular Materials and Engineering, 2016, 302 (1): 1600212
[52]   FEI G, LI G, WU L, et al A spatially and temporally controlled shape memory process for electrically conductive polymer: carbon nanotube composites[J]. Soft Matter, 2012, 8 (19): 5123- 5126
doi: 10.1039/c2sm07357a
[53]   YU K, ZHANG Z, LIU Y, et al Carbon nanotube chains in a shape memory polymer/carbon black composite: to significantly reduce the electrical resistivity[J]. Applied Physics Letters, 2011, 98 (7): 2351
[54]   LE H H, KOLESOV I, ALI Z, et al Effect of filler dispersion degree on the Joule heating stimulated recovery behaviour of nanocomposites[J]. Journal of Materials Science, 2010, 45 (21): 5851- 5859
doi: 10.1007/s10853-010-4661-7
[55]   LENG J S, HUANG W M, LAN X, et al Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite[J]. Applied Physics Letters, 2008, 92 (20): 3408
[56]   GONG X, LIU L, LIU Y, et al An electrical-heating and self-sensing shape memory polymer composite incorporated with carbon fiber felt[J]. Smart Materials and Structures, 2016, 25 (3): 035036
doi: 10.1088/0964-1726/25/3/035036
[57]   PAIK I H, GOO N S, YOON K J, et al Electric resistance property of a conducting shape memory polyurethane actuator[J]. Key Engineering Materials, 2005, 297-300: 1539- 1544
doi: 10.4028/www.scientific.net/KEM.297-300.1539
[58]   吕海宝. 电驱动与溶液驱动形状记忆聚合物混合体系及其本构方程[D]. 哈尔滨: 哈尔滨工业大学, 2010.
LV Hai-bao. Shape memory polymer mixture system and its constitutive equation driven by electric and solution [D]. Harbin: Harbin Institute of Technology, 2010.
[59]   YANG C, WANG B, LI D, et al Modeling and characterization for the responsive performance of CF/PLA and CF/PEEK smart materials fabricated by 4D printing[J]. Virtual and Physical Prototyping, 2017, 12 (1): 69- 76
doi: 10.1080/17452759.2016.1265992
[60]   HERGT R, ANDRA W, DAMBLY C G, et al Physical limits of hyperthermia using magnetite fine particles[J]. IEEE Transactions on Magnetics, 1998, 34 (5): 3745- 3754
doi: 10.1109/20.718537
[61]   HILGER I, HERGT R, KAISER W A Use of magnetic nanoparticle heating in the treatment of breast cancer[J]. IEE Proceedings - Nanobiotechnology, 2005, 152 (1): 33- 39
doi: 10.1049/ip-nbt:20055018
[62]   MOHR R, KRATZ K, WEIGEL T, et al Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (10): 3540- 3545
doi: 10.1073/pnas.0600079103
[63]   ZHENG X, ZHOU S, XIAO Y, et al Shape memory effect of poly(d, l-lactide)/Fe3O4 nanocomposites by inductive heating of magnetite particles[J]. Colloids Surf B Biointerfaces, 2009, 71 (1): 67- 72
doi: 10.1016/j.colsurfb.2009.01.009
[64]   YAKACKI C M, SATARKAR N S, GALL K, et al Shape-memory polymer networks with Fe3O4 nanoparticles for remote activation[J]. Journal of Applied Polymer Science, 2009, 112 (5): 3166- 3176
doi: 10.1002/app.29845
[65]   郑志超. 聚乳酸基形状记忆聚合物的性能研究及其4D打印[D]. 哈尔滨: 哈尔滨工业大学, 2017.
ZHENG Zhi-chao. Lactic acid group shape storage physical performance research and 4D marking [D]. Harbin: Harbin Institute of Technology, 2017.
[66]   BUCKLEY P R, MCKINLEY G H, WILSON T S, et al Inductively heated shape memory polymer for the magnetic actuation of medical devices[J]. IEEE Transactions on Biomedical Engineering, 2006, 53 (10): 2075- 2083
doi: 10.1109/TBME.2006.877113
[67]   RAZZAQ M Y, ANHALT M, FRORMANN L, et al Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers[J]. Materials Science and Engineering A (Structural Materials: Properties, Microstructure and Processing), 2007, 444 (1/2): 227- 235
doi: 10.1016/j.msea.2006.08.083
[68]   YANG H, LEOW W R, WANG T, et al 3D printed photoresponsive devices based on shape memory composites[J]. Advanced Materials, 2017, 29 (33): 170127
[69]   DAI S, RAVI P, TAM K C Thermo- and photo-responsive polymeric systems[J]. Soft Matter, 2009, 5: 2513- 2533
[70]   冯伟. 高强度与光控形状记忆水凝胶的制备与性能研究[D]. 合肥: 中国科学技术大学, 2016.
FENG Wei. Preparation and properties of high strength and light controlled shape memory hydrogels [D]. Hefei: University of Science and Technology of China, 2016.
[71]   翟媛萍, 章维一, 侯丽雅 一种用于快速成型工艺的红光光敏树脂的性能研究[J]. 高分子学报, 2003, (06): 883- 886
ZHAI Yuan-ping, ZHANG Wei-yi, HOU Li-ya Study on the properties of a red light sensitive resin for rapid prototyping[J]. Acta Polymerica Sinica, 2003, (06): 883- 886
doi: 10.3321/j.issn:1000-3304.2003.06.023
[72]   JOCHUM F D, THEATO P Temperature- and light-responsive smart polymer materials[J]. Chemical Society Reviews, 2013, 42 (17): 7468- 7483
doi: 10.1039/C2CS35191A
[73]   FINKELMANN H, NISHIKAWA E, PEREIRA G G, et al A new opto-mechanical effect in solids[J]. Physical Review Letters, 2001, 87 (1): 015501
doi: 10.1103/PhysRevLett.87.015501
[74]   LENDLEIN A, JIANG H, JUNGER O, et al Light-induced shape-memory polymers[J]. Nature, 2005, 434 (7035): 879- 882
doi: 10.1038/nature03496
[75]   JIANG H Y, KELCH S, LENDLEIN A Polymers move in Response to light[J]. Advanced Materials, 2006, 18 (11): 1471- 1475
doi: 10.1002/adma.200502266
[76]   LOPEZ M C, FINKELMANN H, PMUHORAY P P, et al Fast liquid-crystal elastomer swims into the dark[J]. Nature Materials, 2004, 3 (5): 307- 310
doi: 10.1038/nmat1118
[77]   IKEDA T, NAKANO M, YU Y, et al Anisotropic bending and unbending behavior of Azobenzene liquid-crystalline gels by light exposure[J]. Advanced Materials, 2003, 15 (3): 201- 205
doi: 10.1002/adma.200390045
[78]   IRIE M, KUNWATCHAKUN D Photoresponsive polymers. 8. reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives[J]. Macromolecules, 1986, 19 (10): 2476- 2480
doi: 10.1021/ma00164a003
[79]   GYEONG H Y, HYUNGSEOK L, WOO D C 3D printing of organs-on-chips[J]. Bioengineering, 2017, 4 (1): 10- 31
[80]   MA X, QU X, ZHU W, et al Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting[J]. Proceedings of the National Academy of Sciences, 2016, 113 (8): 2206- 2211
doi: 10.1073/pnas.1524510113
[81]   ZAREK M, MANSOUR N, SHAPIRA S, et al 4D printing of shape memory-based personalized Endoluminal medical devices[J]. Macromolecular Rapid Communications, 2017, 38 (2): 1600628
doi: 10.1002/marc.201600628
[82]   MORRISON R J, HOLLISTER S J, NIEDNER M F, et al Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients[J]. Science Translational Medicine, 2015, 7 (285): 285- 308
[83]   HENDRIKSON W J, ROUWKEMA J, CLEMENTI F, et al Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells[J]. Biofabrication, 2017, 9 (3): 031001
doi: 10.1088/1758-5090/aa8114
[84]   TOLLEY M T, FELTON S M, MIYASHITA S, et al. Self-folding shape memory laminates for automated fabrication [C] // 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE, 2013.
[85]   FELTON S M, TOLLEY M T, SHIN B H, et al Self-folding with shape memory composites[J]. Soft Matter, 2013, 9: 7688- 7694
doi: 10.1039/c3sm51003d
[86]   YANG Y, CHEN Y. Novel design and 3D printing of variable stiffness robotic fingers based on shape memory polymer [C] // 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). UTown: IEEE, 2016.
[87]   KIM D H, XIAO J, SONG J, et al Stretchable, curvilinear electronics based on inorganic materials[J]. Cheminform, 2010, 22 (19): 2108- 2124
[88]   KHANG D Y, JIANG H Q, HUANG Y, et al A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates[J]. Science, 2006, 311 (5758): 208- 212
doi: 10.1126/science.1121401
[89]   SEKITANI T, ZSCHIESCHANG U, KLAUK H, et al Flexible organic transistors and circuits with extreme bending stability[J]. Nature Materials, 2010, 9 (12): 1015- 1022
doi: 10.1038/nmat2896
[90]   REEDER J, KALTENBRUNNER M, WARE T, et al Mechanically adaptive organic transistors for implantable electronics[J]. Advanced Materials, 2014, 26 (29): 4967- 4973
doi: 10.1002/adma.201400420
[91]   XU H, YU C, WANG S, et al Deformable, programmable, and shape-memorizing micro-optics[J]. Advanced Functional Materials, 2013, 23 (26): 3364
doi: 10.1002/adfm.201370129
[1] Tian-ze HAO,Hua-ping XIAO,Shu-hai LIU,Chao ZHANG,Hao MA. Research status of integrated intelligent soft robots[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 229-243.
[2] Xiang-fei MENG,Ren-guang WANG,Yuan-li XU. Torque distribution strategy of pure electric driving mode for dual planetary vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2214-2223.
[3] FAN Peng-xuan, CHEN Wu-jun, ZHAO Bing, HU Jian-hui, ZHANG Da-xu, FANG Guang-qiang, PENG Fu-jun. Finite strain viscoelastic model of shape memory polymer in Prony series form[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1194-1200.