The spectral characteristics of radio frequency (RF) discharge plasma were studied at a static air pressure of 12 kPa (pressure corresponding to supersonic wind tunnel section). The effect of RF discharge plasma actuation on unsteadiness of shock wave/boundary layer interaction was studied in supersonic air flow with Ma of 2. The experimental results show that, the relative spectral intensity representing electron temperature rises with the increase of loading power at the same actuation frequency, while the relative spectral intensity representing vibration temperature and electron density hardly changes. When the loading power remains unchanged, as the actuation frequency increases, the relative spectral intensity representing electron temperature increases first and then decreases, however, the relative spectral intensity representing vibration temperature and electron density doesn’t change significantly. The dominant frequency of shock wave oscillation is low frequency without plasma actuation. After applying radio frequency discharge plasma actuation, the low-frequency oscillation of shock wave is weakened and the high-frequency oscillation is strengthened; the characteristic frequency of shock wave changes from low frequency to high frequency; high-energy vortex appears in the boundary layer.
Bang-huang CAI,Hui-min SONG,Shan-guang GUO,Hai-deng ZHANG,Jia-ming SHENG. Control effect of radio frequency discharge plasma excitation on shock wave/boundary layer interference. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1839-1848.
Fig.1Emission spectrum diagnosis system of radio frequency discharge
Fig.2Experimental system of shock wave/boundary layer interference (SWBLI) nonconstancy control
Fig.3Compress corner experimental apparatus
Fig.4Images and emission spectra of radio frequency surface discharge at 12 kPa pressure
Fig.5Emission spectrum and relative spectral intensity variation under different load powers
Fig.6Emission spectrum and relative spectral intensity variation at different frequency levels
Fig.7Schlieren diagram of reference flow field.
Fig.8Power spectral density of grayscale time series at monitoring points Q1~Q4
Fig.9Correlation between monitoring points K1−K6 and other locations of flow field
Fig.10Spatial spectrum distribution of specified frequency in reference flow field
Fig.11Schlieren figure with excitation frequency of 0.7 MHz and spatial distribution of power spectrum at different specified frequencies
Fig.12Schlieren figure with excitation frequency of 1.0 MHz and spatial distribution of power spectrum at different specified frequencies
Fig.13Radio frequency discharge schlieren at different moments
Fig.14Schematic diagram of shock wave location extraction
Fig.15Spectrum diagram of shock position time series
[1]
CLEMENS N T, NARAYANASWAMY V Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46: 469- 492
doi: 10.1146/annurev-fluid-010313-141346
[2]
李应红, 吴云, 宋慧敏, 等. 等离子体流动控制的研究进展与机理探讨[C] // 中国航空学会第六届动力年会论文集. 北京: 中国航空学会动力专业分会, 2006: 790-799. LI Ying-hong, WU Yun, SONG Hui-min, et al. Research progress and mechanism of plasma flow control [C] // Symposium of the 6th CSAA’s Annual Meeting. Beijing: Power Specialty Chapter of CSAA, 2006: 790-799.
[3]
DOERFFER P, TELEGA J Flow control effect on unsteadiness of shock wave induced separation[J]. Journal of Thermal Science, 2013, 22 (6): 511- 516
doi: 10.1007/s11630-013-0656-4
[4]
BENARD N, MOREAU E Role of the electric waveform supplying a dielectric barrier discharge plasma actuator[J]. Applied Physics Letters, 2012, 100 (19): 193503
doi: 10.1063/1.4712125
[5]
ZHAO Z J, LI J M, ZHENG J G, et al Study of shock and induced flow dynamics by nanosecond dielectric-barrier-discharge plasma actuators[J]. AIAA Journal, 2014, 53 (5): 1336- 1348
[6]
王健, 李应红, 程邦勤, 等 等离子体气动激励控制激波的实验研究[J]. 航空学报, 2009, 30 (8): 1374- 1379 WANG Jian, LI Ying-hong, CHENG Bang-qin, et al Experimental study on shock wave control by plasma aerodynamic excitation[J]. Journal of Aviation, 2009, 30 (8): 1374- 1379
doi: 10.3321/j.issn:1000-6893.2009.08.003
[7]
SUN Q, LI Y H, CHENG B Q, et al The characteristics of surface arc plasma and its control effect onsupersonic flow[J]. Physics Letters A, 2014, 378 (36): 2672- 2682
doi: 10.1016/j.physleta.2014.07.016
[8]
SERGEY B LEONOV, IGOR V A, VICTOR R S Dynamics of near-surface electric discharges and mechanisms of their interaction with the airflow[J]. Plasma Sources Science and Technology, 2016, 25 (6): 063001
doi: 10.1088/0963-0252/25/6/063001
[9]
MOREAU E Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40 (3): 605- 636
doi: 10.1088/0022-3727/40/3/S01
[10]
WANG H Y, LI J, JIN D, et al Manipulation of ramp-induced shock wave/boundary layer interaction using a transverse plasma jet array[J]. International Journal of Heat and Fluid Flow, 2017, 67: 133- 137
doi: 10.1016/j.ijheatfluidflow.2017.08.004
[11]
KHORONZHUK R S, KARPENKO A G, VLASHKOV V, et al Microwave discharge initiated by double laser spark in a supersonic airflow[J]. Journal of Plasma Physics, 2015, 81 (3): 1- 12
[12]
THOMAS F O, CORKE T C, IQBAL M, et al Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control[J]. AIAA Journal, 2009, 47 (9): 2169- 2178
doi: 10.2514/1.41588
[13]
THOMAS F O, PUTNAM C M, CHU H C On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interactions[J]. Experiments in Fluids, 1994, 18 (1): 69- 81
[14]
SHINDE V J, GAITONDE D V, MCNAMARA J J. Control of shock wave turbulent boundary layer interaction using structurally constrained active surface morphing [C] // Science Technology 2020 Forum. Orlando: AIAA, 2020-0038.
[15]
PIPONNIAU S, DUSSAUGE J P, DEBIèVE J F, et al A simple model for low-frequency unsteadiness in shock-induced separation[J]. Journal of Fluid Mechanics, 2009, 629: 87- 108
doi: 10.1017/S0022112009006417
[16]
KLIMOV A, BITYURIN V and SEROV Y. Non-thermal approach in plasma aerodynamics [C] // 39th Aerospace Sciences Meeting and Exhibit. Reno: AIAA, 2001-0348.
[17]
KLIMOV A, GRIGORENKO A, EFIMOV A, et al. Vortex control by non-equilibrium plasma [C] // 52nd Aerospace Sciences Meeting. Maryland: AIAA, 2014-0960.
[18]
ZUO F Y, MEMMOLO A, HUANGG P, et al Direct numerical simulation of conical shock wave–turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2019, 877: 167- 195
doi: 10.1017/jfm.2019.558
[19]
WANG J, LI Y H, CHENG B Q, et al Effects of plasma aerodynamic actuation on oblique shock wave in a cold supersonic flow[J]. Journal of Physics D: Applied Physics, 2009, 42 (16): 165503
doi: 10.1088/0022-3727/42/16/165503
[20]
YAN H, LIU F, XU J. Oblique shock control by surface arc discharge plasma [C] // 8th AIAA Flow Control Conference. Washington: AIAA, 2016-3776.
[21]
王宏宇, 李军, 金迪等 激波/边界层干扰对等离子体合成射流的响应特性[J]. 物理学报, 2017, 66 (8): 084705 WANG Hong-yu, LI Jun, JIN Di, et al WU Yun. Response characteristics of shock wave/boundary layer interference to plasma synthetic jet[J]. Journal of physics, 2017, 66 (8): 084705
doi: 10.7498/aps.66.084705
[22]
杨臻. 射频放电等离子体激励特性及其控制激波的研究 [D]. 西安: 空军工程大学, 2018. YANG Zhen. Study on excitation characteristics and shock wave control of radio frequency discharge plasma [D]. Xi'an: Air Force Engineering University, 2018.