Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (7): 1234-1244    DOI: 10.3785/j.issn.1008-973X.2021.07.002
    
Design and optimization of large range 2-DOF micro-positioning clamping system
Miao LIN1,2(),Yong-jian JU1,2,Gang MENG1,2,Kun WANG1,2,*(),Yi CAO1,2
1. School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
2. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
Download: HTML     PDF(2076KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new 2-DOF micro-positioning clamping system with large range was proposed in order to realize the precise positioning and increase the reachable positioning space of the micro-gripper in the micro-operating system. Firstly, a 2-DOF micro-positioning platform was designed based on the 2 translation and 1 rotation (2T1R) type compliant motion pair, and the structure of micro-positioning clamping system was designed by combining it with a micro-gripper. Secondly, the theoretical models of force-displacement relationship, lost motion and natural frequency of micro-positioning platform were deduced by the simplified linear elastic beam model, and the theoretical models of force-displacement relationship, displacement amplification ratio and natural frequency of micro-gripper were deduced by the Euler-Bernoulli beam model and the law of conservation of energy. Then, the parameters of the micro-positioning clamping system were optimized for the improvements of its static and dynamic performance. Finally, the correctness of the theoretical model was verified by finite element simulation, and the reachable positioning space of the micro-gripper was given. Results show that the design of micro-positioning clamping system is effective and feasible.



Key wordsmicro-operating system      compliant mechanism      positioning space      parameter optimization      finite element simulation     
Received: 20 July 2020      Published: 05 July 2021
CLC:  TH 122  
Fund:  高等学校学科创新引智计划资助项目(B18027);江苏省“六大人才高峰”计划资助项目(ZBZZ-012);江苏省高校优秀科技创新团队基金资助项目(2019SJK07);江苏省研究生科研与实践创新计划资助项目(JSCX20_0760);江南大学研究生科研与实践创新计划资助项目(JNSJ19_005)
Corresponding Authors: Kun WANG     E-mail: 2729423602@qq.com;wangkun0808@126.com
Cite this article:

Miao LIN,Yong-jian JU,Gang MENG,Kun WANG,Yi CAO. Design and optimization of large range 2-DOF micro-positioning clamping system. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1234-1244.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.07.002     OR     https://www.zjujournals.com/eng/Y2021/V55/I7/1234


大行程两自由度微定位夹持系统的设计与优化

为了实现微操作系统中微夹持器的精密定位,增加其可达定位空间,提出大行程两自由度微定位夹持系统. 基于2移1转(2T1R)型柔性运动副,设计两自由度微定位平台,并将其与微夹持器相结合,设计微定位夹持系统的结构;采用简化的线弹性梁模型建立微定位平台力?位移关系、丢失运动和固有频率的理论模型,并采用欧拉?伯努利梁模型与能量守恒定律建立微夹持器力?位移关系、位移放大倍率和固有频率的理论模型;以提高微定位夹持系统的静、动态性能为目标进行参数优化;通过有限元仿真验证理论模型的正确性,并给出微夹持器的可达定位空间. 结果表明,微定位夹持系统设计具备有效性与可行性.


关键词: 微操作系统,  柔顺机构,  定位空间,  参数优化,  有限元仿真 
Fig.1 2T1R type compliant motion pair
Fig.2 Structure diagram of 2-DOF micro-positioning platform
Fig.3 Structure diagram of limb one for platform
Fig.4 Structure diagram of micro-gripper
Fig.5 Structure diagram of compliant end
Fig.6 Structure diagram of micro-positioning clamping system
Fig.7 Schematic diagram of limb one for platform
Fig.8 Schematic diagram of platform driving along x axis direction
Fig.9 Force analysis diagram of passive pair in limb one
Fig.10 Stress analysis diagram of medium slender rods e2 in limb one
Fig.11 Schematic diagram of one-sided micro-gripper
Fig.12 Force analysis diagram of bridge mechanism
参数 数值/mm 参数 数值/mm
l1 26 h1 0.4
t1 0.55 L1 1.5
l2 22.19 L2 11.78
t2 0.8 w 1.3
Tab.1 Structural parameters of micro-positioning clamping system
特征参数 优化前 优化后 优化率/%
fp 40.84 Hz 51.16 Hz 25.3
fg 292.81 Hz 346.27 Hz 18.3
δlost 5.16 μm 3.86 μm ?25.2
Ramp 15.22 19.61 28.8
Tab.2 Static and dynamic performance of micro-positioning clamping system before and after optimization
Fig.13 Finite element simulation of static performance for micro-positioning platform in x axis direction
Fig.14 Static performance verification for micro-positioning platform in x axis direction
Fig.15 Stress fringe of micro-positioning platform
Fig.16 Simulation of input and output coupling displacement for micro-positioning platform
Fig.17 Finite element simulation of static performance for micro-gripper
Fig.18 Static performance verification of micro-gripper
Fig.19 First three modal shapes of micro-gripper
Fig.20 First four modal shapes of micro-positioning platform
Fig.21 Reachable working space for micro-gripper
[1]   林超, 陶友淘, 程凯, 等 微/纳传动平台的位移耦合分析[J]. 浙江大学学报: 工学版, 2013, 47 (4): 720- 727
LIN Chao, TAO You-tao, CHENG Kai, et al Displacement coupling analysis of micro/nano transmission platform[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (4): 720- 727
doi: 10.3785/j.issn.1008-973X.2013.04.024
[2]   马立, 荣伟彬, 孙立宁, 等 面向光学精密装配的微操作机器人[J]. 机械工程学报, 2009, 45 (2): 280- 247
MA Li, Rong Wei-bin, SUN Lin-ing, et al Micro operation robot for optical precise assembly[J]. Journal of Mechanical Engineering, 2009, 45 (2): 280- 247
doi: 10.3901/JME.2009.02.280
[3]   ÖZKALE B, PARREIRA R, BEKDEMIR A, et al Modular soft robotic microdevices for dexterous biomanipulation[J]. Lab on a Chip, 2019, 19 (5): 778- 788
doi: 10.1039/C8LC01200H
[4]   吴高华, 杨依领, 李国平, 等 具有高位移增幅特性的柔顺并联式x-y-θ微动平台 [J]. 机器人, 2020, 42 (1): 1- 9
WU Gao-hua, YANG Yi-ling, LI Guo-ping, et al A parallel compliant x-y-θ micro-stage with the characteristic of high displacement magnification [J]. Robot, 2020, 42 (1): 1- 9
[5]   ZHANG J B, LU K K, CHEN W H, et al Monolithically integrated two-axis microgripper for polarization maintaining in optical fiber assembly[J]. Review of Scientific Instruments, 2015, 86 (2): 025105
doi: 10.1063/1.4907551
[6]   于靖军, 郝广波, 陈贵敏, 等 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51 (13): 53- 68
YU Jing-jun, HAO Guang-bo, CHEN Gui-min, et al State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51 (13): 53- 68
doi: 10.3901/JME.2015.13.053
[7]   林超, 李坪洋, 沈忠磊, 等 压电驱动微夹持器特性分析[J]. 仪器仪表学报, 2019, 40 (7): 224- 232
Lin Chao, Li Ping-yang, Shen Zhong-lei, et al Characteristic analysis of the microgripper driven by piezoelectric actuators[J]. Chinese Journal of Scientific Instrument, 2019, 40 (7): 224- 232
[8]   HAO G B, HAND R B Design and static testing of a compact distributed-compliance gripper based on flexure motion[J]. Archives of Civil and Mechanical Engineering, 2016, 16 (4): 708- 716
doi: 10.1016/j.acme.2016.04.011
[9]   MASOOD M U, SALEEM M M, KHAN U S, et al Design, closed-form modeling and analysis of SU-8 based electrothermal microgripper for biomedical applications[J]. Microsystem Technologies, 2019, 25 (4): 1171- 1184
doi: 10.1007/s00542-018-4059-z
[10]   YANG S, XU Q Design and analysis of a decoupled XY MEMS microgripper with integrated dual-axis actuation and force sensing[J]. IFAC-Papers Online, 2017, 50 (1): 808- 813
doi: 10.1016/j.ifacol.2017.08.144
[11]   OWUSU-DANQUAH J S, SALEEB A F, NATSHEH S H Performance of a two-way shape memory microgripper actuator[J]. Journal of Aerospace Engineering, 2018, 31 (4): 04018040
doi: 10.1061/(ASCE)AS.1943-5525.0000857
[12]   HAO G B, ZHU J X Design of a monolithic double-slider based compliant gripper with large displacement and anti-buckling ability[J]. Micromachines, 2019, 10 (10): 1277- 1296
[13]   CHEN X D, HU S Y, DENG Z L, et al Design of large-displacement asymmetric piezoelectric microgripper based on flexible mechanisms[J]. Nanotechnology and Precision Engineering, 2019, 2 (4): 188- 193
doi: 10.1016/j.npe.2019.11.001
[14]   吴志刚, 陈敏 压电精密驱动柔性微夹钳设计[J]. 光学精密工程, 2020, 28 (2): 398- 404
WU Zhi-gan, CHEN Min Design of flexure micro-gripper precision-driven by piezoceramics[J]. Optics and Precision Engineering, 2020, 28 (2): 398- 404
[15]   林盛隆, 张宪民, 朱本亮 高带宽两自由度并联柔顺精密定位平台的优化设计与实验[J]. 光学精密工程, 2019, 27 (8): 1774- 1782
LIN Sheng-long, ZHANG Xian-min, ZHU Ben-liang, et al Optimal design and experiment of a high-bandwidth two-degree-of-freedom parallel nanopositioning stage[J]. Optics and Precision Engineering, 2019, 27 (8): 1774- 1782
doi: 10.3788/OPE.20192708.1774
[16]   AWTAR S, PARMAR G Design of a large range XY nanopositioning system[J]. Journal of Mechanisms and Robotics, 2013, 5 (2): 021008
doi: 10.1115/1.4023874
[17]   田延岭, 包亚洲, 王福军, 等 音圈电机驱动的柔性定位平台设计与控制[J]. 天津大学学报: 自然科学与工程技术版, 2017, 50 (10): 1070- 1076
TIAN Yan-ling, BAO Ya-zhou WANG Fu-jun, et al Design and control of a flexible positioning stage driven by voice coil motors[J]. Journal of Tianjin University: Science and Technology, 2017, 50 (10): 1070- 1076
[18]   HOPKINS J B, CULPEPPER M L Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT) part I: principles[J]. Precision Engineering, 2010, 34 (2): 259- 270
doi: 10.1016/j.precisioneng.2009.06.008
[19]   HOPKINS J B, CULPEPPER M L Synthesis of multi-degree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT) part II: practice[J]. Precision Engineering, 2010, 34 (2): 271- 278
doi: 10.1016/j.precisioneng.2009.06.007
[20]   曹毅, 王保兴, 刘俊辰, 等. 高精度大行程大有效台面空间平动精密定位平台: CN110211627A[P]. 2019-09-06.
[21]   王保兴, 孟刚, 林苗, 等 3-PPP型柔性并联微定位平台的设计与分析[J]. 北京航空航天大学学报, 2020, 46 (4): 798- 807
WANG Bao-xing, MENG Gang, LIN Miao, et al Design and analysis of a 3-PPP compliant parallel micro-positioning stage[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (4): 798- 807
[22]   杨志军, 白有盾, 陈新, 等 基于应力刚化效应的动态特性可调微动平台设计新方法[J]. 机械工程学报, 2015, 51 (23): 153- 159
YANG Zhi-jun, BAI You-dun, CHEN Xin, et al A new design method of dynamic characteristics adjustable micro motion stage based on tension stiffening[J]. Journal of Mechanical Engineering, 2015, 51 (23): 153- 159
doi: 10.3901/JME.2015.23.153
[23]   YU J J, LI S Z, SU H J, et al Screw theory based methodology for the deterministic type synthesis of flexure mechanisms[J]. Journal of Mechanisms and Robotics, 2013, 3 (3): 1194- 1204
[24]   LI Y M, WU Z G Design, analysis and simulation of a novel 3-DOF translational micromanipulator based on the PRB model[J]. Mechanism and Machine Theory, 2016, 100 (2): 235- 258
[25]   HERPE X, WALKER R, DUNNIGAN M, et al On a simplified nonlinear analytical model for the characterisation and design optimisation of a compliant XY micro-motion stage[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49: 66- 76
doi: 10.1016/j.rcim.2017.05.012
[26]   HOWELL L L. Compliant Mechanisms [M]. New York: John Wiley and Sons, 2001: 302.
[27]   KIM J H, KIM S H, KWAK Y K Development of a piezoelectric actuator using a three-dimensional bridge-type hinge mechanism[J]. Review of Scientific Instruments, 2003, 74 (5): 2918- 2924
doi: 10.1063/1.1569411
[28]   XU Q S, LI Y M Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier[J]. Mechanism and Machine Theory, 2016, 46 (2): 183- 200
[1] Ji-dong LI,Ying ZHONG,Xing-fei LI. Actuating characteristics and influencing factors of magnetohydrodynamic momentum wheel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1676-1683.
[2] Jun-xia JIANG,Xin-yuan ZHANG,Bang-ming TAO,Qun DONG. Design and experiment of remote handling motor replacement device based on passive compliant mechanism[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 855-865.
[3] Yong YU,Jing-yuan XUE,Sheng DAI,Qiang-wei BAO,Gang ZHAO. Quality prediction and process parameter optimization method for machining parts[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 441-447.
[4] Wei-da LI,Juan LI,Xiang LI,Hong-miao ZHANG,Hong GU,Yi-peng SHI,Hao-jie ZHANG,Li-ning SUN. Dynamic analysis and parameter optimization of under-actuated heterogeneous lower limb rehabilitation robot[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 222-228.
[5] Yong-qiang OUYANG,Xin-yan ZHANG. Design of energy-saving automated storage and retrieval system considering acceleration and deceleration of storage and retrieval machine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1681-1688.
[6] Liang LU,Fei-yan XIA,Yao-bao YIN,Jia-yang YUAN,Sheng-rong GUO. Spool stuck mechanism of ball-type rotary direct drive pressure servo valve[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1265-1273.
[7] Jun WEI,Yong-xiao DU,Man-shu LIANG. Influence of fatigue stiffness degradation for beam structure on modal frequency[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 899-909.
[8] Fei FEI,Shen-yu LIU,Chang-cheng WU,De-hua YANG,Sheng-li ZHOU. Human kinetic energy harvesting technology based on magnetic levitation structure[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2215-2222.
[9] YANG Xiao-jun, SHU-gan, LI-bing. Modeling and analysis of spatial RSSP constant-force mechanism with compliant joints[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(2): 261-267.
[10] DAI Mei-ling, YANG Fu-jun, HE Xiao-yuan, DAI Xiang-jun. Compressive mechanical properties of new type of hollow sphere structure[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2043-2049.
[11] LIAO Zi-nan, SHAO Xu-dong, QIAO Qiu-heng, CAO Jun-hui, LIU Xiang-ning. Static test and finite element simulation analysis of transverse bending of steel-ultra-high performance concrete composite slabs[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1954-1963.
[12] FAN Hai-gui, CHEN Zhi-ping, XU Feng, TANG Xiao-yu, SU Wen-qiang. Floating-roof tanks' distortion analysis based on measured settlement[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1824-1833.
[13] LIU Kai, CAO Yi, ZHOU Rui, GE Shu-yi, DING Rui. Modeling and optimizing of one-translational and two-rotational LEMs flexure hinge[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2399-2407.
[14] ZHAO Qing juan, XU Jie, SHAN De bin, GUO Bin. Numerical simulation and experimental study based on electromagnetic forming of array of micro channel[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 198-203.
[15] SUN Xiao-yan, YAO Chen-chun, WANG Hai-long, ZHANG Zhi-cheng. Parameter influence analysis of wedge-type anchorages for FRP tendons based on three-dimensional finite element model[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1058-1067.