|
|
Actuating characteristics and influencing factors of magnetohydrodynamic momentum wheel |
Ji-dong LI( ),Ying ZHONG,Xing-fei LI*( ) |
State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China |
|
|
Abstract Based on Navier-Stokes equations for incompressible fluids and magnetohydrodynamics (MHD) basic equations, a complete transfer function model for Hartmann flow of metallic fluid in a rectangular annular tube under current and voltage control mode were built up, and the effects of viscous force and boundary layer on the output performance of the momentum wheel were analyzed. By using the finite element simulation software COMSOL, the fluid motion characteristics and velocity distribution were simulated and verified. The influencing factors of output indexs, including current, magnetic field and characteristic parameters of the fluid, were totally analyzed. In current control mode, the angular momentum output scale factor of the momentum wheel is about 9.68×10-5 N·m·s/A, which can provide the basis for the design and optimization of the momentum wheel.
|
Received: 31 August 2020
Published: 20 October 2021
|
|
Fund: 国家自然科学基金重点项目(61733012);国家自然科学基金国家重大科研仪器研制项目(61427810) |
Corresponding Authors:
Xing-fei LI
E-mail: lijidong1996@tju.edu.cn;lixftju@sina.com
|
磁流体动力学动量轮的致动特性和影响因素
结合不可压缩流体的纳维?斯托克斯方程和磁流体动力学基本方程,针对电流和电压控制模式下矩形截面环管内金属流体的哈脱曼流动问题建立完整的传递函数模型,深入分析流体中黏滞力项和边界层效应对动量轮输出性能的影响. 通过有限元仿真软件COMSOL对流体运动特性和流场分布进行仿真验证,分析电流、磁场和流体特征参数对动量轮输出指标的影响. 在电流控制模式下,动量轮的角动量输出标度因数约为9.68×10?5 N·m·s/A,可作为动量轮的设计与优化依据.
关键词:
磁流体动力学(MHD),
动量轮,
哈脱曼流动,
有限元仿真,
纳维?斯托克斯方程
|
|
[1] |
占剑锋. 微小惯性动量轮的结构设计与实验研究[D]. 长沙: 国防科学技术大学, 2012: 1-2. ZHAN Jian-feng. Structure design and experimental research for micro inertia momentum wheel [D]. Changsha: National University of Defense Technology, 2012: 1-2.
|
|
|
[2] |
CHEN Z M, LIU H Y, WANG H N, et al Attitude maneuver of micro-satellite using thruster plus bias momentum wheel[J]. Journal of Chinese Inertial Technology, 2011, 19 (5): 526- 532
|
|
|
[3] |
MESUROLLE M, LEFEVRE Y, CASTERAS C Electric vector potential formulation to model a magnetohydrodynamic inertial actuator[J]. IEEE Transactions on Magnetics, 2016, 52 (3): 1- 4
|
|
|
[4] |
KUMAR K D Satellite attitude stabilization using fluid rings[J]. Acta Mechanica, 2009, 208: 117- 131
doi: 10.1007/s00707-008-0132-5
|
|
|
[5] |
HAVILAND R P. Orientation control for a space vehicle: U. S. Patent 2856142 [P]. 1958-10-14.
|
|
|
[6] |
DAVIS L K. Sun pointing attitude control system employing fluid flywheels with novel momentum unloading means: U. S. Patent 3403258 [P]. 1968-09-24.
|
|
|
[7] |
DAVIS L K. Angular stabilization device: U. S. Patent 3423613 [P]. 1969-01-21.
|
|
|
[8] |
MAYNARD R S. Fluidic momentum controller: U. S. Patent 4776541 [P]. 1988-10-11.
|
|
|
[9] |
LAUGHLIN D R. Magnetohydrodynamic (MHD) actuator sensor: U. S. Patent 7171853 [P]. 2007-02-06.
|
|
|
[10] |
NOACK D, BRIEẞ K Laboratory investigation of a fluid-dynamic actuator designed for CubeSats[J]. Acta Astronautica, 2014, 96: 78- 82
doi: 10.1016/j.actaastro.2013.11.030
|
|
|
[11] |
CASTERAS C, LEFEVRE Y, HARRIBEY D. Magneto- hydrodynamic inertial actuator: U. S. Patent 9994337 [P]. 2018−6−12.
|
|
|
[12] |
MESUROLLE M. Modélisation numérique en vue de la conception d'un actionneur SCAO magneto-hydrodynamique de precision [D]. Institut National Polytechnique de Toulouse, 2015: 6–7. MESUROLIE M. Numerical modeling for the design of a precision magnetohydrodynamic SCAO actuator [D]. National Polytechnic Institute of Toulouse, 2015: 6-7.
|
|
|
[13] |
CURTI F. Magneto-hydro-dynamics liquid wheel actuator for spacecraft attitude control: AFRL-AFOSR-UK-TR-2017-0004 [R]. Roma: Sapienza University of Rome, 2017.
|
|
|
[14] |
王志远. 基于微型动量轮组的皮纳卫星姿态控制系统研究[D]. 杭州: 浙江大学, 2017: 51-52. WANG Zhi-yuan. Research on the attitude control system for nano-satellites based on micro-reaction wheels units [D]. Hangzhou: Zhejiang University, 2017: 51-52.
|
|
|
[15] |
吴启东. 微小卫星动量轮设计[D]. 南京: 南京理工大学, 2017: 53-54. WU Qi-dong. Design of micro-satellite momentum wheel [D]. Nanjing: Nanjing University of Science and Technology, 2017: 53-54.
|
|
|
[16] |
程旭. 基于电磁效应的电磁流体环的设计与研究[D]. 上海: 上海交通大学, 2018: 72-73. CHENG Xu. Design and research of electromagnetic fluid ring based on electromagnetic effect [D]. shanghai: Shanghai Jiaotong University, 2018: 72-73.
|
|
|
[17] |
BAYLIS J A Experiments on laminar flow in curved channels of square section[J]. Journal of Fluid Mechanics, 1971, 48 (3): 417- 422
doi: 10.1017/S0022112071001678
|
|
|
[18] |
MOLOKOV S, MOREAU R. Magnetohydrodynamics: historical evolution and trends [M]. Dordrecht: Springer, 2007.
|
|
|
[19] |
SHERCLIFF J A. Steady motion of conducting fluids in pipes under transverse magnetic fields [C]// Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge: Cambridge University Press, 1953, 49(1): 136-144.
|
|
|
[20] |
HUNT J C R, SHERCLIFF J A Magnetohydrodynamics at high Hartmann number[J]. Annual Review of Fluid Mechanics, 1971, 3 (1): 37- 62
doi: 10.1146/annurev.fl.03.010171.000345
|
|
|
[21] |
BAYLIS J A, HUNT J C R MHD flow in an annular channel; theory and experiment[J]. Journal of Fluid Mechanics, 1971, 48 (3): 423- 428
doi: 10.1017/S002211207100168X
|
|
|
[22] |
SUBRAMANIAN S, SWAIN P K, DESHPANDE A V, et al Effect of Hartmann layer resolution for MHD flow in a straight, conducting duct at high Hartmann numbers[J]. Sādhanā:Academy Proceedings in Engineering Science, 2015, 40 (3): 851- 861
|
|
|
[23] |
KRASNOV D S, ZIENICKE E, ZIKANOV O, et al Numerical study of the instability of the Hartmann layer[J]. Journal of Fluid Mechanics, 2004, 504: 183- 211
doi: 10.1017/S0022112004008006
|
|
|
[24] |
SHERCLIFF J A The current-content of Hartmann layers[J]. Journal of Applied Mathematics and Physics, 1977, 28 (3): 449- 466
|
|
|
[25] |
CHEN S H. Fundamentals of the finite element method [M]// CHEN S H. Computational Geomechanics and Hydraulic Structures. Singapore: Springer, 2019: 241-314.
|
|
|
[26] |
闫丽丽, 支绍韬, 郭磊, 等 曲折型微机电正交磁通门传感器有限元仿真分析[J]. 传感技术学报, 2019, 32 (1): 67- 70 YAN Li-li, ZHI Shao-tao, GUO Lei, et al Finite element simulation analysis of meandering micro-electro-mechanical orthogonal fluxgate sensors[J]. Chinese Journal of Sensors and Actuators, 2019, 32 (1): 67- 70
doi: 10.3969/j.issn.1004-1699.2019.01.012
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|