1. College of Transportation, Jilin University, Changchun 130022, China 2. Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China 3. School of Engineering, University of Manchester, Manchester M13 9PL, UK
Blue sheep was selected as the object to test the variation of its limbs vertical ground reaction force by variable slope channel with built-in pressure plate, in order to supply bionic prototype for quadruped robots with excellent climbing performance. Results showed that the peak vertical force and the vertical impulse on the left and right sides of the front and hind limbs were completely symmetrical when the sheep walking on the flat ground. The symmetry index of the front limbs was 99.16% and 99.62% respectively, and the symmetry index of the rear limbs was 98.65% and 99.42% respectively. Along with the increasing of slope angle, the blue sheep adjusted the vertical force distribution to prevent lameness, which caused fluctuations in the symmetry index of the left and right hoof. When walking on flat ground, the forelimbs of blue sheep showed higher vertical force than the rear limbs. With the increasing of slope, the vertical force borne by the rear limbs gradually increased. The difference index on the left and right sides of the blue sheep limb has a similar change pattern on different slopes. The mean difference indexes on the left and right limbs of the blue sheep from 0 to 35 degrees were 1.298, 1.305 7, 1.174 4, 1.223 75, 1.017 5, 0.890 5, 0.777 8 and 0.753 5 respectively.
Xiang-yu LIU,Hai-lin KUI,Zhi-hui QIAN,Lei REN. Vertical ground reaction force characteristics of blue sheep based on different slopes walking. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1668-1675.
Fig.2Scene photograph of vertical force acquisition experiment
Fig.3Multiple hoof prints generated by pressure plate
Fig.4Vertical force - time curve of blue sheep's hooves
α/(°)
Fpyq/(N·kg?1)
Fpyh/(N·kg?1)
Fpzq/(N·kg?1)
Fpzh/(N·kg?1)
0
4.75±0.59
3.65±0.14
4.79±0.48
3.70±0.31
5
3.15±0.21
2.39±0.19
2.69±0.14
2.08±0.34
10
2.66±0.33
2.39±0.29
3.04±0.73
2.46±0.63
15
3.72±0.15
3.26±0.26
3.24±0.49
2.48±0.31
20
2.25±0.15
2.62±0.27
3.27±0.29
2.78±0.20
25
2.34±0.25
3.01±0.30
2.34±0.37
2.33±0.26
30
1.81±0.47
2.80±0.50
2.40±0.32
2.64±0.65
35
2.23±0.21
2.83±0.34
2.61±0.13
3.63±0.37
Tab.1Peak vertical force of blue sheep's hooves
α/(°)
Iyq/(N·s·kg?1)
Iyh/(N·s·kg?1)
Izq/(N·s·kg?1)
Izh/(N·s·kg?1)
0°
2.65±0.47
1.71±0.22
2.66±0.33
1.72±0.21
5°
1.53±0.39
1.03±0.14
1.37±0.38
0.86±0.23
10°
1.04±0.30
0.92±0.22
1.13±0.13
0.99±0.12
15°
1.11±0.10
0.96±0.19
1.13±0.15
0.88±0.19
20°
0.81±0.11
1.08±0.18
1.11±0.14
0.97±0.14
25°
0.77±0.17
1.23±0.23
0.79±0.15I
0.87±0.12
30°
0.57±0.19
1.15±0.18
0.73±0.09
1.00±0.14
35°
0.32±0.06
0.73±0.17
0.30±0.05
0.50±0.09
Tab.2Vertical impulse of blue sheep's hooves
Fig.5Statistics graph of normalized peak vertical force for sheep's hooves
Fig.6Statistics graph of normalized vertical impulse for sheep's hooves
α/(°)
SFQ/%
SFH/%
α/(°)
SFQ/%
SFH/%
0
99.16
98.65
20
68.81
94.24
5
85.39
87.03
25
100
77.41
10
67.76
97.15
30
75.42
94.29
15
87.10
76.07
35
85.44
77.95
Tab.3Symmetric index of peak vertical force
α/(°)
SIQ/%
SIH/%
α/(°)
SIQ/%
SIH/%
0
99.62
99.42
20
72.97
89.81
5
89.54
83.50
25
97.47
70.73
10
92.04
92.93
30
78.08
86.96
15
98.23
91.67
35
93.75
68.49
Tab.4Symmetric index of vertical impulse
Fig.7Comparison of peak vertical force between left hoof and right hoof
Fig.8Comparison of vertical impulse between left hoof and right hoof
α/(°)
DFY
DFZ
α/(°)
DFY
DFZ
0
1.301 4
1.294 6
20
0.858 8
1.176 2
5
1.318 0
1.293 3
25
0.777 4
1.004 2
10
1.113 0
1.235 8
30
0.646 4
0.909 1
15
1.141 1
1.306 4
35
0.788
0.719
Tab.5Difference index of peak vertical force
α/(°)
DIY
DIZ
α/(°)
DIY
DIZ
0
1.549 7
1.546 5
20
0.745 2
1.144 3
5
1.485 4
1.743 0
25
0.626 0
0.908 0
10
1.130 4
1.141 4
30
0.495 7
0.73
15
1.156 3
1.284 1
35
0.438 4
0.6
Tab.6Difference index of vertical impulse
Fig.9Comparison of peak vertical force between front hoof and rear hoof with different slopes
Fig.10Comparison of vertical impulse between front hoof and rear hoof with different slopes
Fig.11Variation rule of difference index with slope
[1]
骆颖. 贺兰山岩羊(Pseudois nayaur)和马鹿(Cervus elaphus alxaicus)的食性及生境选择比较研究[D]. 哈尔滨: 东北林业大学, 2011: 1-9. LUO Ying. Comparing the diet and habitat selection of sympatric blue sheep (Pseudois nayaur) and red deer (Cervus elaphus alxaicus) in Helan mountaine, China [D]. Harbin: Northeast Forestry University, 2011: 1-9.
[2]
刘喜玲. 贺兰山岩羊步态运动学分析[D]. 哈尔滨: 东北林业大学, 2012: 1-3. LIU Xi-ling. The kinematics analysis of the blue sheep gait in Helan mountain [D]. Harbin: Northeast Forestry University, 2012: 1-3.
[3]
RAIBERT M, BLANKESPOOR K, NELSON G, et al Bigdog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41 (2): 10822- 10825
doi: 10.3182/20080706-5-KR-1001.01833
[4]
HYUN D J, SEOK S, LEE J, et al High speed trot-running: implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah[J]. International Journal of Robotics Research, 2014, 33 (11): 417- 1445
[5]
KATZ B, DI C J, KIM S. Mini Cheetah: a platform for pushing the limits of dynamic quadruped control [C]// IEEE International Conference on Robotics and Automation ICRA. New York: IEEE, 2019: 6295-6301.
[6]
BELLICOSO C D, JENELTEN F, FANKHAUSER P, et al. Dynamic locomotion and whole-body control for quadrupedal robots [C]// IEEE International Conference on Intelligent Robots and Systems. New York: IEEE, 2017: 3359-3365.
[7]
钱志辉, 苗怀彬, 商震, 等 基于多种步态的德国牧羊犬足−地接触分析[J]. 吉林大学学报:工学版, 2014, 44 (6): 1692- 1697 QIAN Zhi-hui, MIAO Huai-bin, SHANG Zhen, et al Foot-ground contact analysis of German shepherd dog in walking, trotting and jumping gaits[J]. Journal of Jilin University: Engineering and Technology Edition, 2014, 44 (6): 1692- 1697
[8]
田为军, 丛茜, 金敬福 德国牧羊犬的关节角及其地反力[J]. 吉林大学学报: 工学版, 2009, 39 (Suppl. 1): 227- 231 TIAN Wei-jun, CONG Qian, JIN Jing-fu Joint angles and ground reaction forces of German Shepherd dog[J]. Journal of Jilin University:Engineering and Technology Edition, 2009, 39 (Suppl. 1): 227- 231
[9]
STADIG S M, BERGH A K Gait and jump analysis in healthy cats using a pressure mat system[J]. Journal of Feline Medicine and Surgery, 2015, 17 (6): 523- 529
doi: 10.1177/1098612X14551588
[10]
SCHWARZ N, TICHY A, PEHAM C, et al Vertical force distribution in the paws of sound Labrador retrievers during walking[J]. Veterinary Journal, 2017, 221: 16- 22
doi: 10.1016/j.tvjl.2017.01.014
[11]
OOSTERLINCK M, PILLE F, BACK W, et al Use of a stand-alone pressure plate for the objective evaluation of forelimb symmetry in sound ponies at walk and trot[J]. The Veterinary Journal, 2010, 183 (3): 305- 309
doi: 10.1016/j.tvjl.2008.12.012
[12]
OOSTERLINCK M, PILLE F, BACK W, et al A pressure plate study on fore and hindlimb loading and the association with hoof contact area in sound ponies at the walk and trot[J]. The Veterinary Journal, 2011, 190 (1): 71- 76
doi: 10.1016/j.tvjl.2010.08.016
[13]
MERKENS H W, SCHAMHARDT H C, VAN OSCH, et al Ground reaction force patterns of Dutch Warmblood horses at normal trot[J]. Equine Veterinary Journal, 1993, 25 (2): 134- 137
doi: 10.1111/j.2042-3306.1993.tb02923.x
[14]
RIFKIN R E, GRZESKOWIAK R M, MULON P-Y, et al Use of a pressure-sensing walkway system for biometric assessment of gait characteristics in goats[J]. Plos One, 2019, 14 (10): e0223771
doi: 10.1371/journal.pone.0223771
[15]
KIM J, BREUR G J Temporospatial and kinetic characteristics of sheep walking on a pressure sensing walkway[J]. Canadian Journal of Veterinary Research, 2008, 72 (1): 50- 55
[16]
LEWINSON R T, STEFANYSHYNAB D J A descriptive analysis of the climbing mechanics of a mountain goat (Oreamnos americanus) [J]. Zoology, 2016, 119 (6): 541- 546
doi: 10.1016/j.zool.2016.06.001
[17]
PANDY MG, KUMAR V, BERME N, et al The dynamics of quadrupedal locomotion[J]. Journal of Biomechanical Engineering, 1988, 110 (3): 230- 237
doi: 10.1115/1.3108436
[18]
MERKENS H W, SCHAMHARDT H C, HARTMAN W, et al Ground reaction force patterns of Dutch Warmblood horses at normal walk[J]. Equine Veterinary Journal, 1986, 18 (3): 207- 214
doi: 10.1111/j.2042-3306.1986.tb03600.x
[19]
ZHANG F, WANG Y, ZHENG L, et al Biomimetic walking mechanisms: kinematic parameters of goats walking on different slopes[J]. Concurrency and Computation-Practice and Experience, 2018, 30 (24): e4913
doi: 10.1002/cpe.4913
[20]
董永贵, 孙照焱, 贾惠波 振动信号异常值的免疫机制检测算法[J]. 清华大学学报:自然科学版, 2004, 44 (5): 625- 628 DONG Yong-gui, SUN Zhao-yan, JIA Hui-bo Immune mechanism based detection algorithm for abnormal vibration signals[J]. Journal of Tsinghua University: Science and Technology, 2004, 44 (5): 625- 628