Energy Engineering |
|
|
|
|
Human kinetic energy harvesting technology based on magnetic levitation structure |
Fei FEI1( ),Shen-yu LIU1,Chang-cheng WU1,De-hua YANG1,Sheng-li ZHOU2 |
1. Institute of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 2. School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China |
|
|
Abstract An electromagnetic energy harvesting device based on magnetic levitation structure was designed, and the harvesting device can be installed on wrist, elbow and ankle to harvest human kinetic energy generated during human motions. Several kinds of energy harvesting technologies for vibration energy were summarized. The acceleration and the angular velocity of human joints in motion were measured with inertial sensors. The work principle of nonlinear energy harvesting of magnetic levitation structure was analyzed theoretically. The distribution of magnetic field and the variation of magnetic line of force around the structure during vibration were simulated with finite element tools. The resonant frequencies and the range of output voltage were verified by vibration test platform. When the user wears the device for testing, the output voltage and the power increase with the speed of movement. At the speed of 8 km/h, the maximum instantaneous power values captured by wrist, elbow and ankle were 0.60 mW, 0.30 mW and 0.58 mW, respectively. Experimental results show that the electromagnetic energy harvesting device based on magnetic levitation structure can effectively scavenge human kinetic energy and provide electric power for low power consumption devices such as wearable sensors.
|
Received: 08 September 2018
Published: 21 November 2019
|
|
基于磁悬浮结构的人体动能采集技术
设计基于磁悬浮结构的电磁能量采集装置,该装置可佩戴于使用者的腕部、肘部和脚踝处,收集人体运动过程中产生的动能. 概述现有的可用于振动能量采集的多种能量采集技术,利用惯性传感器对实验者运动时的关节加速度及角速度进行测量,对磁悬浮结构的非线性能量采集工作原理进行理论分析. 运用有限元工具对振动时结构周边的磁场分布和磁力线变化进行仿真研究,并通过振动实验平台验证装置的共振频率和电压输出范围. 当使用者佩戴该装置进行测试时,装置输出的电压及功率随运动速度的增加而增加,在8 km/h的运动条件下,腕部、肘部和踝部所能俘获的最大瞬时功率分别为0.60、0.30、0.58 mW. 实验结果表明,基于磁悬浮互斥结构的电磁能量采集装置能有效采集人体动能,并为可穿戴传感器等低功耗设备供能.
关键词:
磁悬浮,
人体动能,
能量采集,
有限元仿真,
可穿戴设备
|
|
[1] |
PANTELOPOULOS A, BOURBAKIS N G A survey on wearable sensor-based systems for health monitoring and prognosis[J]. IEEE Transactions on Systems Man and Cybernetics, 2009, 40 (1): 1- 12
|
|
|
[2] |
VIEIRA M A M, COELHO C N, SILVA D C D, et al. Survey on wireless sensor network devices [C]// 2003 IEEE Conference on Emerging Technologies and Factory Automation. Lisbon: IEEE, 2003: 537-544.
|
|
|
[3] |
COLOMER-FARRARONS J, MIRIBEL-CATALA P, SAIZ-VELA A, et al A multiharvested self-powered system in a low-voltage low-power technology[J]. IEEE Transactions on Industrial Electronics, 2011, 58 (9): 4250- 4263
doi: 10.1109/TIE.2010.2095395
|
|
|
[4] |
曹自平, 王楚, 袁明, 等 环境能量采集技术的研究现状及发展趋势[J]. 南京邮电大学学报: 自然科学版, 2016, 36 (4): 1- 10 CAO Zi-ping, WANG Chu, YUAN Ming, et al Survey on ambient energy harvesting techniques and its development tendency[J]. Journal of Nanjing University of Posts and Telecommunications: Natural Science, 2016, 36 (4): 1- 10
|
|
|
[5] |
曹文英, 谷秋瑾, 刘雨婷, 等 人体能量收集的研究现状[J]. 微纳电子技术, 2016, 53 (2): 78- 86 CAO Wen-ying, GU Qiu-jin, LIU Yu-ting, et al Research status of human energy harvesting[J]. Micronanoelectronic Technology, 2016, 53 (2): 78- 86
|
|
|
[6] |
YUEN S C L, LEE J M H, LUK M H M, et al. AA size micro power conversion cell for wireless applications [C]// 2004 IEEE Conference on Intelligent Control and Automation. Hangzhou: IEEE, 2009: 5629-5634.
|
|
|
[7] |
SARI I, BALKAN T, KULAH H An electromagnetic micro power generator for wideband environmental vibrations[J]. Sensors and Actuators A: Physical, 2008, 145/146: 405- 413
doi: 10.1016/j.sna.2007.11.021
|
|
|
[8] |
WANG Z, HU J, HAN J, et al A novel high-performance energy harvester based on nonlinear resonance for scavenging power-frequency magnetic energy[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (8): 6556- 6564
doi: 10.1109/TIE.2017.2682040
|
|
|
[9] |
TORRES E O, RINCON-MORA G A Electrostatic energy-harvesting and battery-charging CMOS system prototype[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56 (9): 1938- 1948
doi: 10.1109/TCSI.2008.2011578
|
|
|
[10] |
SUZUKI Y, MIKI D, EDAMOTO M, et al A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications[J]. Journal of Micromechanics and Microengineering, 2010, 20 (10): 104002
doi: 10.1088/0960-1317/20/10/104002
|
|
|
[11] |
王二萍, 高景霞, 张金平, 等 压电俘能器研究现状及新发展[J]. 电子元件与材料, 2015, (9): 18- 24 WANG Er-ping, GAO Jing-xia, ZHANG Jin-ping, et al Current situation and new trend of piezoelectric energy harvesters[J]. Electronic Components and Materials, 2015, (9): 18- 24
|
|
|
[12] |
PASQUALE G D, SOMA A. Energy harvesting from human motion with piezo fibers for the body monitoring by MEMS sensors [C]// 2013 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS. Barcelona: IEEE, 2013: 1-6.
|
|
|
[13] |
SNEHALIKA, BHASKER M U. Piezoelectric energy harvesting from shoes of soldier [C]// 2016 IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems. Delhi: IEEE, 2016: 1-5.
|
|
|
[14] |
SONG H C, KUMAR P, MAURYA D, et al Ultra-low resonant piezoelectric MEMS energy harvester with high power density[J]. Journal of Microelectromechanical Systems, 2017, 26 (6): 1226- 1234
doi: 10.1109/JMEMS.2017.2728821
|
|
|
[15] |
刘成龙, 孟爱华, 陈文艺, 等 振动能量收集技术的研究现状与发展趋势[J]. 装备制造技术, 2013, (12): 43- 47 LIU Cheng-long, MENG Ai-hua, CHENG Wen-yi, et al Research and development of vibration energy harvesting technology[J]. Equipment Manufacturing Technology, 2013, (12): 43- 47
doi: 10.3969/j.issn.1672-545X.2013.12.015
|
|
|
[16] |
SUE C Y, TSAI N C Human powered MEMS-based energy harvest devices[J]. Applied Energy, 2012, 93 (5): 390- 403
|
|
|
[17] |
STARNER T Human-powered wearable computing[J]. IBM Systems Journal, 1996, 35 (3/4): 618- 629
|
|
|
[18] |
BERDY D F, VALENTINO D J, PEROULIS D Kinetic energy harvesting from human walking and running using a magnetic levitation energy harvester[J]. Sensors and Actuators A: Physical, 2015, 222: 262- 271
doi: 10.1016/j.sna.2014.12.006
|
|
|
[19] |
WANG W, CAO J, ZHANG N, et al Magnetic-spring based energy harvesting from human motions: design, modeling and experiments[J]. Energy Conversion and Management, 2017, 132: 189- 197
doi: 10.1016/j.enconman.2016.11.026
|
|
|
[20] |
MANN B P, SIMS N D Energy harvesting from the nonlinear oscillations of magnetic levitation[J]. Journal of Sound and Vibration, 2009, 319 (1/2): 515- 530
|
|
|
[21] |
PRIYA S, INMAN D J. Energy harvesting technologies [M]. New York: Springer, 2009: 3-9.
|
|
|
[22] |
SHAN X B, GUAN S W, LIU Z S, et al A new energy harvester using a piezoelectric and suspension electromagnetic mechanism[J]. Journal of Zhejiang University: Science A, 2013, 14 (12): 890- 897
doi: 10.1631/jzus.A1300210
|
|
|
[23] |
FOISAL A R M, HOMG C, CHUNG G S Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever[J]. Sensors and Actuators A: Physical, 2012, 182 (15): 106- 113
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|