Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (5): 899-909    DOI: 10.3785/j.issn.1008-973X.2019.05.010
    
Influence of fatigue stiffness degradation for beam structure on modal frequency
Jun WEI(),Yong-xiao DU,Man-shu LIANG
School of Civil Engineering, Central South University, Changsha 410075, China
Download: HTML     PDF(1271KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The fatigue experiment and dynamic test were carried out on the prestressed concrete beam, and the evolution laws of fatigue stiffness and modal frequency during the whole fatigue process were obtained, in order to study the influence of fatigue stiffness degradation for beam structure on the modal frequency. A variable stiffness finite element correction model for the whole fatigue process was established and its modal analysis was carried out. The modal frequency degradation law and the influence mechanism on modal frequency by the fatigue stiffness degradation were discussed, by comparing and analyzing the experiment and simulation results. Results showed that the modal frequency of beam structure had a three-stage attenuation law which was similar to the degradation of bending stiffness, and it indicated that there was a mapping relationship between fatigue stiffness and modal frequency degradation. The first-order frequency had the largest decrease, the second-order frequency was the second, and the third-order frequency had the smallest decrease under the action of fatigue. The proposed variable stiffness assumption was well used in the finite element simulation and the simulation results showed that the deviation of the first-order frequency simulation value was basically within 10%. The proposed full-process dynamic characteristics analysis method provides a new idea for the fatigue analysis of beam structure.



Key wordsfatigue experiment      fatigue stiffness degradation      finite element simulation      model modification      modal frequency      dynamic characteristics     
Received: 22 October 2018      Published: 17 May 2019
CLC:  TU 317  
Cite this article:

Jun WEI,Yong-xiao DU,Man-shu LIANG. Influence of fatigue stiffness degradation for beam structure on modal frequency. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 899-909.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.05.010     OR     http://www.zjujournals.com/eng/Y2019/V53/I5/899


梁结构疲劳刚度退化对模态频率的影响

为了研究梁结构疲劳刚度退化对模态频率的影响,对预应力混凝土梁进行疲劳试验和动力测试,得到疲劳历程中疲劳刚度和模态频率的演化规律. 建立疲劳全过程变刚度有限元修正模型,并对其进行模态分析. 比较分析试验和模拟结果,讨论模态频率退化规律及疲劳刚度退化对其影响机制. 研究结果表明,梁结构模态频率具有类似抗弯刚度退化的三阶段衰减规律,表明疲劳刚度与模态频率退化存在映射关系;在疲劳作用下,第1阶频率的下降幅度最大,第2阶频率次之,第3阶频率的下降幅度最小;提出的变刚度假设在有限元模拟中运用良好,模拟结果显示第1阶频率模拟值的偏差基本在10%以内. 提出的疲劳全过程动力特性分析方法为梁结构疲劳分析研究提供了新思路.


关键词: 疲劳试验,  疲劳刚度退化,  有限元模拟,  模型修正,  模态频率,  动力特性 
L/mm L0/mm h/mm b/mm 混凝土强度等级 预应力筋(1×7钢绞线) 普通钢筋型号
fptk/MPa 束数 每束根数 纵筋 箍筋
5 500 5 400 428 80 C50 1 860 1 2 HRB335 HPB300
Tab.1 Design parameters of model beam
Fig.1 Dimensions and reinforcement for PC model beam
梁编号 fcu fc Ec
No.4 43.1 26.5 31 725
No.2 46.2 29.0 32 204
No.5 40.8 25.7 30 516
Tab.2 Measured mechanical properties of concrete MPa
钢筋种类 d/mm fy/MPa fu/MPa
HRB335 10 395 475
HPB300 8 310 452
Tab.3 Measured mechanical properties of steel bar
Fig.2 Physical map of PC model beam
Fig.3 Experiment loading mode
编号 Pmin/kN Pmax/kN ΔP/kN 应力幅 Nf/万次
No.4 ? ? ? 静载试验;Pu=265 kN ?
No.2 50 130 80 Pmin=0.20PuPmax=0.50Pu 45
No.5 50 120 70 Pmin=0.20PuPmax=0.45Pu 50
Tab.4 Test parameters and fatigue life of model beams
Fig.4 Acceleration sensor distribution
Fig.5 Failure patterns of PC model beams
Fig.6 Fatigue bending stiffness distribution curves
Fig.7 Fatigue bending stiffness degradation curves for mid-span
梁编号 n n/Nf wfn wen δ/% γfn γen
1阶 2阶 3阶 1阶 2阶 3阶 1阶 2阶 3阶 1阶 2阶 3阶 1阶 2阶 3阶
No.2 初始 0 24.103 86.444 185.898 26.482 68.082 149.745 ?8.98 26.97 24.14 1.000 1.000 1.000 1.000 1.000 1.000
1 0.02 21.180 76.394 165.871 23.759 63.569 146.501 ?10.86 20.17 13.22 0.879 0.884 0.892 0.897 0.934 0.978
5 0.11 20.937 75.534 164.131 22.917 59.535 144.523 ?8.64 26.87 13.57 0.869 0.874 0.883 0.865 0.874 0.965
10 0.22 20.822 75.133 163.319 22.615 59.495 143.659 ?7.93 26.28 13.68 0.864 0.869 0.879 0.854 0.874 0.959
25 0.56 20.574 74.323 161.674 22.706 59.791 144.608 ?9.39 24.30 11.80 0.854 0.860 0.870 0.857 0.878 0.966
45 1.00 18.576 67.256 147.180 21.331 57.353 136.215 ?12.91 17.27 8.05 0.771 0.778 0.792 0.805 0.842 0.910
No.5 初始 0 23.147 83.103 178.905 24.803 60.426 141.294 ?6.68 37.53 26.62 1.000 1.000 1.000 1.000 1.000 1.000
1 0.02 21.760 78.323 169.421 22.495 58.034 139.205 ?3.27 34.96 21.71 0.940 0.942 0.947 0.907 0.960 0.985
5 0.10 21.401 77.113 167.000 21.012 54.957 135.731 1.85 40.32 23.04 0.925 0.928 0.933 0.847 0.909 0.961
9 0.18 21.235 76.500 165.768 21.238 54.827 134.034 ?0.02 39.53 23.68 0.917 0.921 0.927 0.856 0.907 0.949
25 0.50 20.805 75.000 162.749 20.996 54.199 133.445 ?0.91 38.38 21.96 0.899 0.903 0.910 0.847 0.897 0.944
50 1.00 18.427 68.023 148.538 19.982 52.199 130.813 ?7.78 30.32 13.55 0.796 0.819 0.830 0.806 0.864 0.926
Tab.5 Simulated and measured frequency and deviation summary
Fig.8 Measured frequency degradation curves
类别 E/(105 N·mm?2 ν ρ/(103 kg·m?3 fy/MPa
纵筋 2.00 0.3 7.8 395
箍筋 2.00 0.3 7.8 310
预应力筋 1.95 0.3 7.8 1 860
混凝土 ? 0.2 2.6 ?
Tab.6 Basic material parameters of model beam
Fig.9 Finite element model of PC beam
Fig.10 Effective prestressing trend of model beams
n/Nf 梁No.2 n/Nf 梁No.5
B/
(1013 N·mm2
Apσconn)/
kN
B/
(1013 N·mm2
Apσconn)/
kN
0 3.161 289.00 0 2.916 313.00
0.02 2.435 279.31 0.02 2.571 301.96
0.11 2.378 262.08 0.10 2.488 284.47
0.22 2.350 252.94 0.18 2.449 276.34
0.30 2.336 248.63 0.30 2.407 268.86
0.40 2.320 244.55 0.40 2.377 264.53
0.56 2.297 239.70 0.50 2.348 261.13
0.60 2.291 238.69 0.60 2.318 258.33
0.70 2.275 236.44 0.70 2.283 255.95
0.80 2.254 234.49 0.80 2.238 253.87
0.90 2.223 232.75 0.90 2.164 252.04
1.00 1.869 231.20 1.00 1.626 250.40
Tab.7 Main damage feature simulation during fatigue process
Fig.11 Process of fatigue modal analysis
Fig.12 Simulation frequency degradation curves
[1]   吴晓莉, 顾彬 识别钢筋混凝土桥面板疲劳损伤的剩余刚度法[J]. 特种结构, 2008, 25 (3): 69- 71
WU Xiao-li, GU Bin The residual stiffness (RS) method for indentifying fatigue damage of reinforced concrete bridge slabs[J]. Special Structures, 2008, 25 (3): 69- 71
doi: 10.3969/j.issn.1001-3598.2008.03.019
[2]   陈才生. 重载及腐蚀损伤下钢筋混凝土梁疲劳性能试验研究[D]. 杭州: 浙江大学, 2015: 3–12.
CHEN Cai-sheng. Experimental research on fatigue performance of reinforced concrete beams under overload and corrosion damage [D]. Hangzhou: Zhejiang University, 2015: 3–12.
[3]   NATáRIO F, FERNáNDEZ R M, MUTTONI A Experimental investigation on fatigue of concrete cantilever bridge deck slabs subjected to concentrated loads[J]. Engineering Structures, 2015, 89: 191- 203
doi: 10.1016/j.engstruct.2015.02.010
[4]   PATHAK P, ZHANG Y X Nonlinear finite element analyses of fiber-reinforced polymer-strengthened steel-reinforced concrete beams under cyclic loading[J]. Structural Concrete, 2017, 18 (6): 929- 937
doi: 10.1002/suco.2017.18.issue-6
[5]   朱红兵. 公路钢筋混凝土简支梁桥疲劳试验与剩余寿命预测方法研究[D]. 长沙: 中南大学, 2011: 11?12.
ZHU Hong-bing. Research on fatigue test and residual life prediction method of highway reinforced-concrete simply-supported beam bridge [D]. Changsha: Central South University, 2011: 11?12.
[6]   VAN PAEPEGEM W, DEGRIECK J A new coupled approach of residual stiffness and strength for fatigue of fiber-reinforced composites[J]. International Journal of Fatigue, 2002, 24 (7): 747
doi: 10.1016/S0142-1123(01)00194-3
[7]   MA Y, XIANG Y, WANG L, et al Fatigue life prediction for aging RC beams considering corrosive environments[J]. Engineering Structures, 2014, (79): 211- 221
[8]   刘芳平, 周建庭 基于疲劳应变演化的混凝土弯曲强度退化分析[J]. 中国公路学报, 2017, 30 (4): 97- 105
LIU Fang-ping, ZHOU Jian-ting Concrete bending strength degradation analysis based on fatigue strain evolution[J]. China Journal of Highway and Transport, 2017, 30 (4): 97- 105
doi: 10.3969/j.issn.1001-7372.2017.04.012
[9]   CHOPRA A K. Dynamics of structures theory and applications to earthquake engineering [M]. 3rd ed. London: Prentice Hall, 2006.
[10]   HAMED E, FROSTIG Y Free vibrations of cracked prestressed concrete beams[J]. Engineering Structures, 2004, 26 (11): 1611- 1621
doi: 10.1016/j.engstruct.2004.06.004
[11]   曹晖, 郑星, 华建民, 等 基于非线性振动特性的预应力混凝土梁损伤识别[J]. 工程力学, 2014, 32 (2): 190- 194
CAO Hui, ZHENG Xing, HUA Jian-min, et al Damage detection of prestressed concrete beams based on nonlinear dynamic characteristics[J]. Engineering Mechanics, 2014, 32 (2): 190- 194
[12]   SANGKEUN A, EUN-BEOM J, HYO-IN K, et al Identification of stiffness distribution of fatigue loaded polymer concrete through vibration measurements[J]. Composite Structures, 2016, 136: 11- 15
doi: 10.1016/j.compstruct.2015.09.026
[13]   ELYAS G, GARY S P, EMMANUEL M Finite element analysis for fatigue damage reduction in metallic riveted bridges using pre-stressed cfrp plates[J]. Polymers, 2014, 6 (4): 1096- 1118
doi: 10.3390/polym6041096
[14]   余志武, 李进洲, 宋力 重载铁路桥梁疲劳试验研究[J]. 土木工程学报, 2012, 45 (12): 115- 126
YU Zhi-wu, LI Jin-zhou, SONG Li Experimental study on fatigue behaviors of heavy-haul railway bridges[J]. China Civil Engineering Journal, 2012, 45 (12): 115- 126
[15]   中华人民共和国住房与城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 混凝土结构试验方法标准: GB/T 50152−2012 [S]. 北京: 中国建筑工业出版社, 2012: 35–41.
[16]   LIU Fang-ping, ZHOU Jian-ting Experimental research on fatigue damage of reinforced concrete rectangular beam[J]. KSCE Journal of Civil Engineering, 2018, 22 (9): 3512- 3523
doi: 10.1007/s12205-018-1767-y
[17]   汤红卫, 李士彬, 朱慈勉 基于刚度下降的混凝土梁疲劳累积损伤模型的研究[J]. 铁道学报, 2007, 29 (3): 84- 88
TANG Hong-wei, LI Shi-bin, ZHU Ci-mian A fatigue cumulative damage model of RC beam based on stiffness degradation[J]. Journal of the China Railway Society, 2007, 29 (3): 84- 88
doi: 10.3321/j.issn:1001-8360.2007.03.016
[18]   牛鹏志, 黄培彦, 姚国文, 等 CFL增强RC梁的疲劳累积损伤模型[J]. 华南理工大学学报: 自然科学版, 2007, 35 (2): 23- 26
NIU Peng-zhi, HUANG Pei-yan, YAO Guo-wen, et al Fatigue accumulative damage model of rc beam strengthened with carbon fiber laminate[J]. Journal of South China University of Technology: Natural Science Edition, 2007, 35 (2): 23- 26
[19]   SAIIDI M, DOUGLAS B, FENG S Prestress force effect on vibration frequency of concrete bridges[J]. Journal of Structural Engineering, 1994, 120 (7): 2233- 2241
doi: 10.1061/(ASCE)0733-9445(1994)120:7(2233)
[20]   李瑞鸽. 全预应力混凝土梁动力性能研究及有效预应力识别[D]. 武汉: 华中科技大学, 2009: 74–76.
LI Rui-ge. Research on dynamic performance of full prestressed concrete beam and identification of virtual prestressing force [D]. Wuhan: Huazhong University of Science and Technology, 2009: 74–76.
[21]   杜进生, 刘西拉 基于结构变形的无粘结预应力筋应力变化研究[J]. 土木工程学报, 2003, 36 (8): 12- 19
DU Jin-sheng, LIU Xi-la Research on the variations of unbounded prestressed tendon stresses based upon the structural deformation[J]. China Civil Engineering Journal, 2003, 36 (8): 12- 19
doi: 10.3321/j.issn:1000-131X.2003.08.003
[22]   WU X H, OTANI S, SHIOHARA H Tendon model for nonlinear analysis of prestressed concrete structures[J]. Journal of Structural Engineering, ASCE, 2001, 127 (4): 398- 405
doi: 10.1061/(ASCE)0733-9445(2001)127:4(398)
[23]   雷兵. 部分预应力混凝土梁疲劳性能试验研究及数值模拟[D]. 大连: 大连理工大学, 2013: 60–61.
LEI Bing. Experimental research and numerical simulation on mechanical properties of P.P.C beam under fatigue loading [D]. Dalian: Dalian University of Technology, 2013: 60–61.
[1] Hua HUANG,Wen-qiang DENG,Yuan LI,Run-lan GUO. Mass matching design of machine tool parts based on spatial dynamics optimization[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2009-2017.
[2] Pei LIU,Hai-xin ZHU,Wei-guo YANG,Nan-qi HUANGFU. Tests on resonance and vibration mitigation responses of high-rise building under machine excitations[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 102-109.
[3] Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.
[4] Ying-long CHEN,Di YAN,Zeng-meng ZHANG,Da-yong NING,Yong-jun GONG. Static and dynamic characteristics of soft unit based on hydraulic straight drive[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1602-1609.
[5] Fei FEI,Shen-yu LIU,Chang-cheng WU,De-hua YANG,Sheng-li ZHOU. Human kinetic energy harvesting technology based on magnetic levitation structure[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2215-2222.
[6] LIU Li-ning, CHI Xue-feng, DU Guang-sheng, LEI Li. Aerodynamic characteristics of vans during accelerated overtaking process in crosswinds[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 174-179.
[7] MEI Zhen-yu, ZHANG Wei. Dynamicsanalysis of parking space occupancy series based oncomplexity measurement[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 727-734.
[8] DAI Mei-ling, YANG Fu-jun, HE Xiao-yuan, DAI Xiang-jun. Compressive mechanical properties of new type of hollow sphere structure[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2043-2049.
[9] LIAO Zi-nan, SHAO Xu-dong, QIAO Qiu-heng, CAO Jun-hui, LIU Xiang-ning. Static test and finite element simulation analysis of transverse bending of steel-ultra-high performance concrete composite slabs[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1954-1963.
[10] SHI Hai-min, YU Xiao-li, HUANG Yu-qi, LIU Zhen-tao, LI Si-wen, LU Guo-dong. Shroud depth structure of multi-fans cooling package[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1844-1850.
[11] FAN Hai-gui, CHEN Zhi-ping, XU Feng, TANG Xiao-yu, SU Wen-qiang. Floating-roof tanks' distortion analysis based on measured settlement[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1824-1833.
[12] JIN Wei liang, ZHOU Zheng dong, ZHANG Jun,MAO Jiang hong, CUI Lei, PAN Chong gen. Experimental research on fatigue properties of corroded steel bars based on dynamic piezomagnetism[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 225-230.
[13] ZHAO Qing juan, XU Jie, SHAN De bin, GUO Bin. Numerical simulation and experimental study based on electromagnetic forming of array of micro channel[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 198-203.
[14] LOU Wen-juan, JIANG Xiong, XIA Liang, JIN Xiao-hua, WANG Zhen-hua. Wind-induced weak parts and reinforcement methods of long cross-armed transmission tower[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1798-1784.
[15] DING Yong, XIE Xu, GOU Chan-ghuan, HUANG Jian-yuan. Research on computational method and dynamic characteristics of
traffic vibration of steel bridge
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 1107-1114.