Five pier specimens were tested under low-cyclic reversed loading conditions to study the seismic behavior of concrete-filled steel tube (CFST) composite piers. The effects of axial compression ratio, stirrup ratio, longitudinal reinforcement ratio and shear span ratio on skeleton curve, load capacity, displacement ductility, stiffness degradation and energy dissipation capacity of the specimens were discussed. A finite element model was established to simulate the hysteretic behaviors of CFST composite piers under lateral repeated loads. The numerical results agreed well with the measured values. The finite element model was used to expand the range of structural parameters, and the influence of various structural parameters on the seismic behavior of composite piers was further analyzed. The test and numerical simulation results show that the lateral displacement stiffness and the bearing capacity of the composite pier increase with the increase of axial compression ratio, whereas the displacement ductility and the energy dissipation capacity deteriorate. Increasing the stirrup ratio or the longitudinal reinforcement ratio will improve the seismic performance of the composite pier. Shear span ratio is an important factor influencing the specimen failure mode. As the shear span ratio increases, the lateral bearing capacity and the lateral displacement stiffness of the specimen decrease, but the deformation and the energy dissipation capacity increase obviously.
Fig.3Comparison of calculated and test hysteretic curves
Fig.4Comparison of load-displacement skeleton curves under different structural parameters
试件编号
Py/kN
Pu/kN
Δy/mm
Δu/mm
μ
ξep
1)注:表中数据为正、反向加载的平均值
SC01
112.25
131.14
12.25
56.40
4.60
0.222
SC02
101.92
121.37
9.88
63.80
6.50
0.240
SC03
107.66
127.36
10.26
43.47
4.24
0.203
SC04
120.14
141.35
10.72
61.40
5.73
0.282
SC05
162.08
189.46
6.25
40.27
6.44
0.218
Tab.2Characteristic parameters of skeleton curves for test specimens
Fig.5Calculation illustration of equivalent hysteresis-damping ratio
Fig.6Stiffness degradation curves of specimens under different structural parameters
Fig.7Finite element model of CFST composite pier
Fig.8Concrete compression stress-strain curve
Fig.9Concrete tensile stress-displacement curve
Fig.10Comparison of experimental and calculated results of skeleton curves
试件编号
Pu
Δu
ξep
数值计算结果/kN
试验结果/kN
误差/%
数值计算结果/mm
试验结果/mm
误差/%
数值计算结果
试验结果
误差/%
SC01
132.33
131.14
0.91
44.37
56.40
21.33
0.257
0.222
15.77
SC02
128.34
121.37
5.74
56.41
63.80
11.58
0.262
0.240
9.17
SC03
129.24
127.36
1.48
36.14
43.47
16.86
0.214
0.203
5.42
SC04
143.06
141.35
1.21
45.18
61.40
26.42
0.279
0.282
1.06
SC05
195.00
189.46
2.92
39.41
40.27
2.14
0.244
0.218
11.93
Tab.3Comparison between numerical and test results
模型编号
n
ρv
ρl
λ
研究参数
R0
0.150
0.84%
1.28%
3.0
基准件
N1
0.075
0.84%
1.28%
3.0
n
N2
0.225
0.84%
1.28%
3.0
n
V1
0.150
0.58%
1.28%
3.0
ρv
V2
0.150
1.17%
1.28%
3.0
ρv
L1
0.150
0.84%
1.74%
3.0
ρl
L2
0.150
0.84%
2.28%
3.0
ρl
S1
0.150
0.84%
1.28%
2.0
λ
S2
0.150
0.84%
1.28%
4.0
λ
Tab.4Structural parameters of finite element models
Fig.11Comparison of numerical simulation results of hysteretic curves of composite piers with different structural parameters
Fig.12Comparison of numerical simulation results of skeleton curves of composite piers with different structural parameters
[1]
钱稼茹, 康洪震 钢管高强混凝土组合柱抗震性能试验研究[J]. 建筑结构学报, 2009, 30 (4): 85- 93 QIAN Jia-ru, KANG Houg-zhen Experimental study on seismic behavior of high-strength concrete-filled steel tube composite columns[J]. Journal of Building Structures, 2009, 30 (4): 85- 93
doi: 10.3321/j.issn:1000-6869.2009.04.011
[2]
康洪震, 钱稼茹. 钢管混凝土叠合柱轴压强度试验研究[J]. 建筑结构, 2006, 36(增9): 22–25. KANG Hong-zhen, QIAN Jia-ru.An experiment study of axial compressive strength of concrete filled steel tube composite columns [J]. Building Structures, 2006, 36(Suppl.9) : 22–25.
[3]
尧国皇, 李永进, 廖飞宇 钢管混凝土叠合柱轴压性能研究[J]. 建筑结构学报, 2013, 34 (5): 114- 121 YAO Guo-huang, LI Yong-jin, LIAO Fei-yu Behavior of concrete-filled steel tube reinforced concrete columns subjected to axial compression[J]. Journal of Building Structures, 2013, 34 (5): 114- 121
[4]
王刚, 钱稼茹, 林立岩 钢管混凝土叠合构件受弯性能分析[J]. 工业建筑, 2006, 36 (2): 68- 71 WANG Gang, QIAN Jia-ru, LIN Li-yan Study on bending behavior of steel reinforced concrete members[J]. Industrial Construction, 2006, 36 (2): 68- 71
doi: 10.3321/j.issn:1000-8993.2006.02.020
[5]
赵国藩, 张德娟, 黄承逵 钢管砼增强高强砼柱的抗震性能研究[J]. 大连理工大学学报, 1996, 36 (6): 125- 132 ZHAO Guo-fan, ZHANG De-juan, HUANG Cheng-kui Study of earthquake resistant behavior of high strength concrete column reinforced with concrete filled steel tube[J]. Journal of Dalian University of Technology, 1996, 36 (6): 125- 132
[6]
聂建国, 柏宇, 李胜勇, 等 钢管混凝土核心柱轴压组合性能分析[J]. 土木工程学报, 2005, 38 (9): 9- 13 NIE Jian-guo, BAI Yu, LI Sheng-yong, et al Analysis on composite column with inside concrete filled tube under axial compression[J]. China Civil Engineering Journal, 2005, 38 (9): 9- 13
doi: 10.3321/j.issn:1000-131X.2005.09.002
[7]
林立岩, 李庆钢 混凝土与钢的组合促进高层建筑结构的发展[J]. 东南大学学报: 自然科学版, 2002, 32 (5): 702- 705 LIN Li-yan, LI Qing-gang Composition of concrete and steel promotes the development of high-rise building[J]. Journal of Southeast University: Natural Science Edition, 2002, 32 (5): 702- 705
[8]
林立岩, 李庆钢 钢管混凝土叠合柱的设计概念与技术经济性分析[J]. 建筑结构, 2008, 38 (3): 17- 21 LIN Li-yan, LI Qing-gang Design concept and analysis of technical economy for steel tube reinforced concrete column[J]. Building Structure, 2008, 38 (3): 17- 21
[9]
林立岩, 国建龙, 耿昕. 钢管砼叠合柱: 一种抗震性能良好的新型柱[C] // 第七届全国结构工程学术会议论文集: 第Ⅱ卷. 石家庄: 中国力学学会, 1998 : 7–10. LIN Li-yan, GUO Jian-long, GENG Xin. Steel-tube composite column: a new type column with good seismic performance [C]// Proceedings of the 7th National Conference on Structural Engineering: Vol. Ⅱ. Shijiazhuang: CSTAM, 1998: 7–10.
[10]
徐明. 钢骨混凝土柱在南京交通大厦中的应用[C] // 第十届全国结构工程学术会议论文集: 第Ⅲ卷. 南京: 中国力学学会, 2001: 452–456. XU Ming. Application of SRC columns in Nanjing traffic building [C]// Proceedings of the 10th National Conference on Structural Engineering: Vol. Ⅲ. Nanjing: CSTAM, 2001: 452–456.
[11]
禹长永. 钢管核心混凝土桥墩抗震性能研究[D]. 大连: 大连理工大学, 2013. YU Chang-yong. Research on the seismic behavior of the concrete pier with core of concrete filled steel tube [D]. Dalian: Dalian University of Technology, 2013.
[12]
唐志强. 钢管混凝土核心柱组合桥墩抗震性能研究[D]. 大连: 大连理工大学, 2015. TANG Zhi-qiang. Study on the seismic performance of composite bridge piers with concrete filled steel tubular column embedded inside [D]. Dalian: Dalian University of Technology, 2015.
[13]
QIU W L, JIANG M Seismic responses of composite bridge piers with CFT columns embedded inside[J]. Steel and Composite Structures, 2013, 15 (3): 343- 355
doi: 10.12989/scs.2013.15.3.343
[14]
刘阳, 郭子雄, 欧阳文俊, 等 核心型钢混凝土柱抗震性能及轴压比限值试验研究[J]. 土木工程学报, 2010, 43 (6): 57- 66 LIU Yang, GUO Zi-xiong, OUYANG Wen-jun, et al Experimental study of the seismic behavior and axial compression ratio limit of CSRC columns[J]. China Civil Engineering Journal, 2010, 43 (6): 57- 66
[15]
金向前. 配有圆钢管的钢骨混凝土柱抗震性能试验研究[C] // 第十届全国结构工程学术会议论文集: 第Ⅲ卷. 南京: 中国力学学会, 2001: 6. Jin Xiang-qian. Experimental study on seismic behavior of src columns with circular steel tubes [C]// Proceedings of the 10th National Conference on Structural Engineering: Vol. Ⅲ. Nanjing: CSTAM, 2001: 6
[16]
陈小刚, 牟在根, 张举兵, 等 型钢混凝土柱抗震性能实验研究[J]. 北京科技大学学报, 2009, 31 (12): 1516- 1524 CHEN Xiao-gang, MOU Zai-gen, ZHANG Ju-bing, et al Experimental study on the seimic behavior of steel reinforced concrete columns[J]. Journal of University of Seience and Technology Beijing, 2009, 31 (12): 1516- 1524
doi: 10.3321/j.issn:1001-053X.2009.12.006
[17]
赵桂峰, 李瑶亮, 张猛, 等 锈蚀钢筋混凝土框架柱滞回性能的数值模拟研究[J]. 世界地震工程, 2014, 30 (2): 71- 79 ZHAO Gui-feng, LI Yao-liang, ZHANG Meng, et al Numerical simulation research on hysteresis performance of the corroded reinforced concrete frame columns[J]. Word Earthquake Engineering, 2014, 30 (2): 71- 79
ACI 318 Committee. Building code requirements for structural concrete (ACI 318—05) and commentary (ACI 318R—05) [S]. Farmington Hills: American Concrete Institute, 2005.
[20]
MANDER J B, PRIESTLEY M J N, PARK R Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114 (8): 1804- 1826
doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
[21]
刘威, 韩林海.ABAQUS分析钢管混凝土轴压性能的若干问题研究[J]. 哈尔滨工业大学学报, 2005, 37(增1): 157–160. LIU Wei, HAN Lin-hai. Investigation in some problems of behaviors of concrete filled steel tubes subject axial local compression by ABAQUS method[J]. Journal of Harbin University of Technology, 2005, 37(Suppl. 1): 157–160.
[22]
聂建国, 王宇航 ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30 (4): 59- 67 NIE Jian-guo, WANG Yu-hang Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures[J]. Engineering Mechanics, 2013, 30 (4): 59- 67
[23]
李贵乾. 钢筋混凝土桥墩抗震性能试验研究及数值分析[D]. 重庆: 重庆交通大学, 2010. LI Gui-qian. Experimental study and numerical analysis on seismic performance of reinforced concrete bridge columns [D]. Chongqing: Chongqing Jiaotong University, 2010.