Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (12): 2298-2308    DOI: 10.3785/j.issn.1008-973X.2019.12.006
Civil Engineering, Hydraulic Engineering     
Effect of electric potential condition on numerical simulation of electrochemical rehabilitation for concrete structures
Jin XIA1(),Shi-jie JIN2,Xiao-yu HE3,Xiao-mei XU3,Wei-liang JIN1
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
2. The Architectural Design and Research institute of Zhejiang University Co. Ltd, Hangzhou 310007, China
3. Research Center for Water Transport and Marine Engineering Technology, Zhejiang Provincial Institute of Communications Planning, Design and Research Co. Ltd, Hangzhou 310013, China
Download: HTML     PDF(1602KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Three kinds of electric potential conditions, including constant potential condition, electro-neutrality condition and Gauss’s law, were employed to study their influence on the numerical simulation of the electrochemical rehabilitation for concrete structures. A numerical model was established based on mass conservation, Nernst-Planck and electric potential condition equations. The electric potential, chloride concentration, net charge and current density distributions in the concrete during the electrochemical rehabilitation were compared by numerical models. Results show that the chloride concentration gradient at the chloride wave front was moderately large for the constant potential condition model. Meanwhile, the modelling results of the chloride ion concentration and potential distributions from the electro-neutrality condition and the Gauss’s law models were similar. The acceleration area and the restricted area of the migration occur at the auxiliary anode and cathodic steel bars, respectively. The chloride ion concentration distribution was also experimentally obtained. The comparison of experiment results and numerically modelling results indicates that, the chloride ion concentration distribution of the electro-neutrality condition and the Gauss’s law models are more approximate to the experimental results. Therefore, the electro-neutrality condition and the Gauss’s law models are applicable for the simulation analysis of electrochemical rehabilitation for concrete structures.



Key wordsconcrete structure      electrochemical rehabilitation      numerical simulation      electric potential condition      constant potential condition      electro-neutrality condition      Gauss’s law     
Received: 22 October 2018      Published: 17 December 2019
CLC:  TU 528.0  
Cite this article:

Jin XIA,Shi-jie JIN,Xiao-yu HE,Xiao-mei XU,Wei-liang JIN. Effect of electric potential condition on numerical simulation of electrochemical rehabilitation for concrete structures. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2298-2308.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.12.006     OR     http://www.zjujournals.com/eng/Y2019/V53/I12/2298


电势条件对混凝土结构电化学修复数值模拟的影响

通过试验研究和理论分析,对比3类电势条件(常电势条件、电中性条件和高斯定理)对混凝土结构电化学修复过程数值模拟结果的影响. 利用物质守恒定律、Nernst-Planck方程和电势条件构建电化学修复过程的数值模型,通过数值模型比较电化学修复过程电势、氯离子浓度、净电荷数和电流密度等参数在混凝土内部的分布. 结果表明,在常电势条件下,除氯前端的氯离子浓度梯度较大;当采用电中性条件与高斯定理时,模拟氯离子浓度分布和电势分布结果较为相似,混凝土分别在辅助阳极与阴极钢筋区域形成电迁移加速作用区与抑制作用区. 试验研究电化学除氯过程的氯离子浓度分布. 试验结果与数值模拟结果的对比表明,采用电中性条件或高斯定理模拟氯离子浓度分布更接近试验测试结果,适用于钢筋混凝土结构电化学修复的仿真分析.


关键词: 混凝土结构,  电化学修复,  数值模拟,  电势条件,  常电势条件,  电中性条件,  高斯定理 
离子 ci /(mol·m?3 ${c_{i,0}}$ /(mol·m?3 Di /(10?12 m2·s?1 zi
Cl? 0 77.40 4.00 ?1
OH? 4.48 4.48 10.36 ?1
Na+ 0 77.40 3.84 1
Ca2+ 2.24 2.24 0.64 2
Tab.1 Boundary condition,initial condition and other parameters for comparison of electrochemical chloride removal numerical models
Fig.1 1-D simulation results of electrochemical chloride removal using constant potential condition
Fig.2 Comparison for 1D simulation results of electrochemical chloride removal using electro-neutrality condition and Gauss’s law
Fig.3 Net charge distribution in simulated concrete under different electric potential conditions
Fig.4 Laplace operator of electric potential by different electric potential conditions
Fig.5 Schematic of concrete specimen for electrochemical chloride removal experiment
m/(kg·m?3) r/%1)
水泥 石子
 注:1) r 为混泥土中氯化钠与水泥的质量百分比
220 509 562 1 044 3
Tab.2 Concrete mixture of the specimens for electrochemical chloride removal
Fig.6 Schematic of electrochemical chloride removal system
Fig.7 Schematic of sampling method for chloride ion concentration test
离子 ci /(mol·m?3 ${c_{{{i}},0}}$ /(mol·m?3 Di /(10?12 m2·s?1 zi
Cl? 0 77.40 9.00 ?1
OH? 4.48 4.48 23.30 ?1
Na+ 0 77.40 8.64 1
Ca2+ 2.24 2.24 1.44 2
Tab.3 Boundary condition, initial condition and other parameters in numerical modelling of electrochemical chloride removal
Fig.8 Comparison between 1D simulation results and experimental results of electrochemical chloride removal
Fig.9 Comparison between 2D simulation results and experimental results of electrochemical chloride removal
[1]   金伟良, 赵羽习. 混凝土结构耐久性: 第2版[M]. 北京: 科学出版社, 2014.
[2]   郭育霞, 贡金鑫, 尤志国 电化学除氯后混凝土性能试验研究[J]. 大连理工大学学报, 2008, 48 (6): 863- 868
GUO Yu-xia, GONG Jin-xin, YOU Zhi-guo Experimental study of characteristics of concrete experienced electrochemical extraction of chlorides[J]. Journal of Dalian University of Technology, 2008, 48 (6): 863- 868
doi: 10.7511/dllgxb200806015
[3]   蒋正武, 杨凯飞, 潘微旺 碳化混凝土电化学再碱化效果研究[J]. 建筑材料学报, 2012, 15 (1): 17- 21
JIANG Zheng-wu, YANG Kai-fei, PAN Wei-wang Study on effectiveness of electrochemical realkalization for carbonated concrete[J]. Journal of Building Materials, 2012, 15 (1): 17- 21
doi: 10.3969/j.issn.1007-9629.2012.01.004
[4]   孙文博, 高小建, 杨英姿, 等 电化学除氯处理后的混凝土微观结构研究[J]. 哈尔滨工程大学学报, 2009, 30 (10): 1108- 1112
SUN Wen-bo, GAO Xiao-jian, YANG Ying-zi, et al Microstructure of concrete after electrochemical chloride extraction treatment[J]. Journal of Harbin Engineering University, 2009, 30 (10): 1108- 1112
[5]   屈文俊, 熊焱, 郭莉 碳化混凝土再碱化影响因素及其耐久性研究[J]. 建筑材料学报, 2008, 11 (1): 21- 27
QU Wen-jun, XIONG Yan, GUO Li Influence factor of realkalization technique for carbonated concrete and study of its durability[J]. Journal of Building Materials, 2008, 11 (1): 21- 27
doi: 10.3969/j.issn.1007-9629.2008.01.004
[6]   FENG G, LI L, KIM B, et al Multiphase modelling of ionic transport in cementitious materials with surface charges[J]. Computational Materials Science, 2016, 111: 339- 349
doi: 10.1016/j.commatsci.2015.09.060
[7]   LI L Y, PAGE C L Finite element modelling of chloride removal from concrete by an electrochemical method[J]. Corrosion Science, 2000, 42 (12): 2145- 2165
doi: 10.1016/S0010-938X(00)00044-5
[8]   SAMSON E, MARCHAND J Numerical solution of the extended nernst-planck model[J]. Journal of Colloid and Interface Science, 1999, 215 (1): 1- 8
doi: 10.1006/jcis.1999.6145
[9]   BANFILL P F G. Features of the mechanism of electrolytic re-alkalization and desalination treatments for reinforced concrete [C] // Corrosion and Corrosion Protection of Steel in Concrete: Proceedings of International Conference. Sheffield: [s. n.], 1994: 1489−1498.
[10]   ANDRADE C, DIEZ J M, ALAMáN A, et al Mathematical modelling of electrochemical chloride extraction from concrete[J]. Cement and Concrete Research, 1995, 25 (4): 727- 740
doi: 10.1016/0008-8846(95)00063-I
[11]   LI L, EASTERBROOK D, XIA J, et al Numerical simulation of chloride penetration in concrete in rapid chloride migration tests[J]. Cement and Concrete Composites, 2015, 63: 113- 121
doi: 10.1016/j.cemconcomp.2015.09.004
[12]   胡少伟, 朱雅仙, 游日, 等 外加电场作用下氯离子在钢筋混凝土结构中的扩散模拟[J]. 水运工程, 2010, (8): 7- 11
HU Shao-wei, ZHU Ya-xian, YOU Ri, et al Diffusion simulation analysis of chloride ion penetration in reinforced concrete structure under external electric field[J]. Port and Waterway Engineering, 2010, (8): 7- 11
doi: 10.3969/j.issn.1002-4972.2010.08.002
[13]   WANG Y, LI L Y, PAGE C L A two-dimensional model of electrochemical chloride removal from concrete[J]. Computational Materials Science, 2001, 20 (2): 196- 212
doi: 10.1016/S0927-0256(00)00177-4
[14]   KUBO J, SAWADA S, PAGE C L, et al Electrochemical injection of organic corrosion inhibitors into carbonated cementitious materials: part 2. mathematical modelling[J]. Corrosion Science, 2007, 49 (3): 1205- 1227
doi: 10.1016/j.corsci.2006.06.015
[15]   TOUMI A, FRAN?OIS R, ALVARADO O Experimental and numerical study of electrochemical chloride removal from brick and concrete specimens[J]. Cement and Concrete Research, 2007, 37 (1): 54- 62
doi: 10.1016/j.cemconres.2006.09.012
[16]   FRIZON F, LORENTE S, OLLIVIER J P, et al Transport model for the nuclear decontamination of cementitious materials[J]. Computational Materials Science, 2003, 27 (4): 507- 516
doi: 10.1016/S0927-0256(03)00051-X
[17]   LIU Q, XIA J, EASTERBROOK D, et al Three-phase modelling of electrochemical chloride removal from corroded steel-reinforced concrete[J]. Construction and Building Materials, 2014, 70: 410- 427
doi: 10.1016/j.conbuildmat.2014.08.003
[18]   CONTI F, EISENMAN G The non-steady-state membrane potential of ion exchangers with fixed sites[J]. Biophysical Journal, 1965, 5 (2): 247
doi: 10.1016/S0006-3495(65)86714-5
[19]   祝频, 王新祥, 韦江雄, 等 电化学除盐模型及离子迁移过程的数值分析[J]. 武汉理工大学学报, 2011, 33 (5): 41- 47
ZHU Pin, WANG Xin-xiang, WEI Jiang-xiong, et al Model and numerical analysis of ions migration in concrete during the process of electrochemical chloride extraction[J]. Journal of Wuhan University of Technology, 2011, 33 (5): 41- 47
doi: 10.3963/j.issn.1671-4431.2011.05.010
[20]   XIA J, LI T, FANG J, et al Numerical simulation of steel corrosion in chloride contaminated concrete[J]. Construction and Building Materials, 2019, 228: 116745
doi: 10.1016/j.conbuildmat.2019.116745
[21]   KRABBENH?FT K, KRABBENH?FT J Application of the poisson-nernst-planck equations to the migration test[J]. Cement and Concrete Research, 2008, 38 (1): 77- 88
doi: 10.1016/j.cemconres.2007.08.006
[22]   PIVONKA P, SMITH D, GARDINER B Investigation of Donnan equilibrium in charged porous materials: a scale transition analysis[J]. Transport in Porous Media, 2006, 69: 215- 237
[23]   JOHANNESSON B, HOSOKAWA Y, YAMADA K Numerical calculations of the effect of moisture content and moisture flow on ionic multi-species diffusion in the pore solution of porous materials[J]. Computers and Structures, 2009, 87 (1-2): 39- 46
doi: 10.1016/j.compstruc.2008.08.011
[24]   XIA J, LI L Numerical simulation of ionic transport in cement paste under the action of externally applied electric field[J]. Construction and Building Materials, 2013, 39: 51- 59
doi: 10.1016/j.conbuildmat.2012.05.036
[25]   LIU Q, YANG J, XIA J, et al A numerical study on chloride migration in cracked concrete using multi-component ionic transport models[J]. Computational Materials Science, 2015, 99: 396- 416
doi: 10.1016/j.commatsci.2015.01.013
[26]   JOHANNESSON B Comparison between the gauss’ law method and the zero current method to calculate multi-species ionic diffusion in saturated uncharged porous materials[J]. Computers and Geotechnics, 2010, 37 (5): 667- 677
doi: 10.1016/j.compgeo.2010.04.005
[27]   LIU Q. Multi-phase modelling of multi-species ionic migration in concrete[D]. Devonshire: University of Plymouth, 2014.
[28]   李仁民, 刘松玉, 方磊, 等 基于微观PNP多离子运移模型的多孔介质曲率系数分析[J]. 东南大学学报: 自然科学版, 2011, 41 (3): 647- 651
LI Ren-min, LIU Song-yu, FANG Lei, et al Tortuosity analysis of porous media based on micr-scale PNP multi-ions transport model[J]. Journal of Southeast University: Natural Science Edition, 2011, 41 (3): 647- 651
[29]   XIA J, LIU Q, MAO J, et al Effect of environmental temperature on efficiency of electrochemical chloride removal from concrete[J]. Construction and Building Materials, 2018, 193: 189- 195
doi: 10.1016/j.conbuildmat.2018.10.187
[30]   BENNET J, SCHUE T J, CLEAR K C, et al. Electrochemical chloride removal and protection of concrete bridge components: laboratory studies[R]. Washington DC: Laboratory Studies Strategic Highway Research Program, National Research Council, 1993.
[31]   XU C, JIN W L, WANG H L, et al Organic corrosion inhibitor of triethylenetetramine into chloride contamination concrete by eletro-injection method[J]. Construction and Building Materials, 2016, 115: 602- 617
doi: 10.1016/j.conbuildmat.2016.04.076
[32]   ISMAIL M, MUHAMMAD B Electrochemical chloride extraction effect on blended cements[J]. Advances in Cement Research, 2011, 23 (5): 241- 248
doi: 10.1680/adcr.2011.23.5.241
[33]   金伟良, 黄楠, 许晨, 等 双向电渗对钢筋混凝土修复效果的试验研究: 保护层阻锈剂、氯离子和总碱度的变化规律[J]. 浙江大学学报: 工学版, 2014, 48 (9): 1586- 1594
JIN Wei-liang, HUANG Nan, XU Cheng, et al Experimental research on effect of bidirectional electromigration rehabilitation on reinforced concrete -concentration changes of inhibitor, chloride ions and total alkalinity[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (9): 1586- 1594
[34]   俞凯奇, 毛江鸿, 陈佳芸, 等 混凝土电化学除氯过程钢筋周围氯离子迁移规律试验研究[J]. 混凝土, 2015, (2): 33- 35
YU Kai-qi, MAO Jiang-hong, CHEN Jia-yun, et al Experimental research on chloride migration regularity around steel-bar during electrochemical chloride extraction for reinforced concrete[J]. Concrete, 2015, (2): 33- 35
doi: 10.3969/j.issn.1002-3550.2015.02.009
[35]   CHANG C C, YEIH W, CHANG J J, et al Effects of stirrups on electrochemical chloride removal efficiency[J]. Construction and Building Materials, 2014, 68: 692- 700
doi: 10.1016/j.conbuildmat.2014.06.091
[1] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[2] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[3] Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.
[4] Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.
[5] Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.
[6] Jin XIA,Run-li GAN,Yan FANG,Yu-xi ZHAO,Wei-liang JIN. Experimental study on direct shear performance of concrete-concrete interface of prefabricated structure sleeve grouting connection[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 491-498.
[7] Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.
[8] Zhong YUN,Meng WEN,Zi-rong LUO,Long CHEN. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 407-415.
[9] Si-yuan XU,Jun DU,Guang-xi ZHAO,Zheng-ying WEI. Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2224-2232.
[10] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.
[11] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.
[12] Zhong YUN,Meng WEN,Yi JIANG,Long CHEN,Long-fei FENG. Design and hydrodynamic analysis of pectoral fin oscillation propulsion mechanism of bionic manta ray[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 872-879.
[13] Wen-liang QIU,Ha-si HU,Tian TIAN,Zhe ZHANG. Structural parameters affecting seismic behavior of concrete-filled steel tube composite piers[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 889-898.
[14] Yu-qi HUANG,Pan MEI,Xiao-ji CHEN,Chang-shui DENG. Heating strategy for electric vehicular battery pack based on CFD analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 207-213.
[15] Yu XIANG,Shu-zhe ZHANG,Jun-feng LI,Zheng-ying WEI,Li-xiang YANG,Li-hao JIANG. Numerical simulation and experimental verification for selective laser single track melting forming of Ti6Al4V[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2102-2109.