Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (5): 889-898    DOI: 10.3785/j.issn.1008-973X.2019.05.009
    
Structural parameters affecting seismic behavior of concrete-filled steel tube composite piers
Wen-liang QIU(),Ha-si HU,Tian TIAN,Zhe ZHANG
School of Civil Engineering, Dalian University of Technology, Dalian 116024, China
Download: HTML     PDF(1888KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Five pier specimens were tested under low-cyclic reversed loading conditions to study the seismic behavior of concrete-filled steel tube (CFST) composite piers. The effects of axial compression ratio, stirrup ratio, longitudinal reinforcement ratio and shear span ratio on skeleton curve, load capacity, displacement ductility, stiffness degradation and energy dissipation capacity of the specimens were discussed. A finite element model was established to simulate the hysteretic behaviors of CFST composite piers under lateral repeated loads. The numerical results agreed well with the measured values. The finite element model was used to expand the range of structural parameters, and the influence of various structural parameters on the seismic behavior of composite piers was further analyzed. The test and numerical simulation results show that the lateral displacement stiffness and the bearing capacity of the composite pier increase with the increase of axial compression ratio, whereas the displacement ductility and the energy dissipation capacity deteriorate. Increasing the stirrup ratio or the longitudinal reinforcement ratio will improve the seismic performance of the composite pier. Shear span ratio is an important factor influencing the specimen failure mode. As the shear span ratio increases, the lateral bearing capacity and the lateral displacement stiffness of the specimen decrease, but the deformation and the energy dissipation capacity increase obviously.



Key wordsconcrete-filled steel tube (CFST) composite pier      seismic behavior      quasi-static test      numerical simulation      ABAQUS     
Received: 24 April 2018      Published: 17 May 2019
CLC:  U 443  
Cite this article:

Wen-liang QIU,Ha-si HU,Tian TIAN,Zhe ZHANG. Structural parameters affecting seismic behavior of concrete-filled steel tube composite piers. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 889-898.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.05.009     OR     http://www.zjujournals.com/eng/Y2019/V53/I5/889


影响钢管混凝土组合桥墩抗震性能的结构参数

为了研究钢管混凝土(CFST)组合桥墩的抗震性能,对5个桥墩试件进行低周反复加载试验,研究轴压比、配箍率、纵筋率和剪跨比对试件骨架曲线、承载能力、位移延性、刚度退化和耗能能力的影响. 建立有限元模型模拟钢管混凝土组合桥墩在水平反复荷载作用下的滞回性能,数值计算结果与试验实测值吻合较好. 采用该有限元模型扩充结构参数范围,进一步分析各参数对组合桥墩抗震性能的影响. 试验及数值模拟结果表明:组合桥墩试件的水平侧移刚度和承载力随轴压比的增加而提高,但位移延性和耗能能力变差;提高配箍率或纵筋率均可改善组合桥墩的抗震性能;剪跨比是影响试件破坏模式的重要因素,随着剪跨比的增加,试件的水平承载力和侧移刚度降低,但变形和耗能能力明显提高.


关键词: 钢管混凝土(CFST)组合桥墩,  抗震性能,  拟静力试验,  数值模拟,  ABAQUS 
试件编号 ρv/% ρl/% ρs/% λ n 研究参数
SC01 0.84 1.28 1.74 3.0 0.150 基准件
SC02 0.84 1.28 1.74 3.0 0.075 n
SC03 0.58 1.28 1.74 3.0 0.150 ρv
SC04 0.84 1.74 1.74 3.0 0.150 ρl
SC05 0.84 1.28 1.74 2.0 0.150 λ
Tab.1 Summary of design parameters of specimens
Fig.1 Dimensions and reinforcement of specimens
Fig.2 Loading schematic of CFST composite pier
Fig.3 Comparison of calculated and test hysteretic curves
Fig.4 Comparison of load-displacement skeleton curves under different structural parameters
试件编号 Py/kN Pu/kN Δy/mm Δu/mm μ ξep
1)注:表中数据为正、反向加载的平均值
SC01 112.25 131.14 12.25 56.40 4.60 0.222
SC02 101.92 121.37 9.88 63.80 6.50 0.240
SC03 107.66 127.36 10.26 43.47 4.24 0.203
SC04 120.14 141.35 10.72 61.40 5.73 0.282
SC05 162.08 189.46 6.25 40.27 6.44 0.218
Tab.2 Characteristic parameters of skeleton curves for test specimens
Fig.5 Calculation illustration of equivalent hysteresis-damping ratio
Fig.6 Stiffness degradation curves of specimens under different structural parameters
Fig.7 Finite element model of CFST composite pier
Fig.8 Concrete compression stress-strain curve
Fig.9 Concrete tensile stress-displacement curve
Fig.10 Comparison of experimental and calculated results of skeleton curves
试件编号 Pu Δu ξep
数值计算结果/kN 试验结果/kN 误差/% 数值计算结果/mm 试验结果/mm 误差/% 数值计算结果 试验结果 误差/%
SC01 132.33 131.14 0.91 44.37 56.40 21.33 0.257 0.222 15.77
SC02 128.34 121.37 5.74 56.41 63.80 11.58 0.262 0.240 9.17
SC03 129.24 127.36 1.48 36.14 43.47 16.86 0.214 0.203 5.42
SC04 143.06 141.35 1.21 45.18 61.40 26.42 0.279 0.282 1.06
SC05 195.00 189.46 2.92 39.41 40.27 2.14 0.244 0.218 11.93
Tab.3 Comparison between numerical and test results
模型编号 n ρv ρl λ 研究参数
R0 0.150 0.84% 1.28% 3.0 基准件
N1 0.075 0.84% 1.28% 3.0 n
N2 0.225 0.84% 1.28% 3.0 n
V1 0.150 0.58% 1.28% 3.0 ρv
V2 0.150 1.17% 1.28% 3.0 ρv
L1 0.150 0.84% 1.74% 3.0 ρl
L2 0.150 0.84% 2.28% 3.0 ρl
S1 0.150 0.84% 1.28% 2.0 λ
S2 0.150 0.84% 1.28% 4.0 λ
Tab.4 Structural parameters of finite element models
Fig.11 Comparison of numerical simulation results of hysteretic curves of composite piers with different structural parameters
Fig.12 Comparison of numerical simulation results of skeleton curves of composite piers with different structural parameters
[1]   钱稼茹, 康洪震 钢管高强混凝土组合柱抗震性能试验研究[J]. 建筑结构学报, 2009, 30 (4): 85- 93
QIAN Jia-ru, KANG Houg-zhen Experimental study on seismic behavior of high-strength concrete-filled steel tube composite columns[J]. Journal of Building Structures, 2009, 30 (4): 85- 93
doi: 10.3321/j.issn:1000-6869.2009.04.011
[2]   康洪震, 钱稼茹. 钢管混凝土叠合柱轴压强度试验研究[J]. 建筑结构, 2006, 36(增9): 22–25.
KANG Hong-zhen, QIAN Jia-ru.An experiment study of axial compressive strength of concrete filled steel tube composite columns [J]. Building Structures, 2006, 36(Suppl.9) : 22–25.
[3]   尧国皇, 李永进, 廖飞宇 钢管混凝土叠合柱轴压性能研究[J]. 建筑结构学报, 2013, 34 (5): 114- 121
YAO Guo-huang, LI Yong-jin, LIAO Fei-yu Behavior of concrete-filled steel tube reinforced concrete columns subjected to axial compression[J]. Journal of Building Structures, 2013, 34 (5): 114- 121
[4]   王刚, 钱稼茹, 林立岩 钢管混凝土叠合构件受弯性能分析[J]. 工业建筑, 2006, 36 (2): 68- 71
WANG Gang, QIAN Jia-ru, LIN Li-yan Study on bending behavior of steel reinforced concrete members[J]. Industrial Construction, 2006, 36 (2): 68- 71
doi: 10.3321/j.issn:1000-8993.2006.02.020
[5]   赵国藩, 张德娟, 黄承逵 钢管砼增强高强砼柱的抗震性能研究[J]. 大连理工大学学报, 1996, 36 (6): 125- 132
ZHAO Guo-fan, ZHANG De-juan, HUANG Cheng-kui Study of earthquake resistant behavior of high strength concrete column reinforced with concrete filled steel tube[J]. Journal of Dalian University of Technology, 1996, 36 (6): 125- 132
[6]   聂建国, 柏宇, 李胜勇, 等 钢管混凝土核心柱轴压组合性能分析[J]. 土木工程学报, 2005, 38 (9): 9- 13
NIE Jian-guo, BAI Yu, LI Sheng-yong, et al Analysis on composite column with inside concrete filled tube under axial compression[J]. China Civil Engineering Journal, 2005, 38 (9): 9- 13
doi: 10.3321/j.issn:1000-131X.2005.09.002
[7]   林立岩, 李庆钢 混凝土与钢的组合促进高层建筑结构的发展[J]. 东南大学学报: 自然科学版, 2002, 32 (5): 702- 705
LIN Li-yan, LI Qing-gang Composition of concrete and steel promotes the development of high-rise building[J]. Journal of Southeast University: Natural Science Edition, 2002, 32 (5): 702- 705
[8]   林立岩, 李庆钢 钢管混凝土叠合柱的设计概念与技术经济性分析[J]. 建筑结构, 2008, 38 (3): 17- 21
LIN Li-yan, LI Qing-gang Design concept and analysis of technical economy for steel tube reinforced concrete column[J]. Building Structure, 2008, 38 (3): 17- 21
[9]   林立岩, 国建龙, 耿昕. 钢管砼叠合柱: 一种抗震性能良好的新型柱[C] // 第七届全国结构工程学术会议论文集: 第Ⅱ卷. 石家庄: 中国力学学会, 1998 : 7–10.
LIN Li-yan, GUO Jian-long, GENG Xin. Steel-tube composite column: a new type column with good seismic performance [C]// Proceedings of the 7th National Conference on Structural Engineering: Vol. Ⅱ. Shijiazhuang: CSTAM, 1998: 7–10.
[10]   徐明. 钢骨混凝土柱在南京交通大厦中的应用[C] // 第十届全国结构工程学术会议论文集: 第Ⅲ卷. 南京: 中国力学学会, 2001: 452–456.
XU Ming. Application of SRC columns in Nanjing traffic building [C]// Proceedings of the 10th National Conference on Structural Engineering: Vol. Ⅲ. Nanjing: CSTAM, 2001: 452–456.
[11]   禹长永. 钢管核心混凝土桥墩抗震性能研究[D]. 大连: 大连理工大学, 2013.
YU Chang-yong. Research on the seismic behavior of the concrete pier with core of concrete filled steel tube [D]. Dalian: Dalian University of Technology, 2013.
[12]   唐志强. 钢管混凝土核心柱组合桥墩抗震性能研究[D]. 大连: 大连理工大学, 2015.
TANG Zhi-qiang. Study on the seismic performance of composite bridge piers with concrete filled steel tubular column embedded inside [D]. Dalian: Dalian University of Technology, 2015.
[13]   QIU W L, JIANG M Seismic responses of composite bridge piers with CFT columns embedded inside[J]. Steel and Composite Structures, 2013, 15 (3): 343- 355
doi: 10.12989/scs.2013.15.3.343
[14]   刘阳, 郭子雄, 欧阳文俊, 等 核心型钢混凝土柱抗震性能及轴压比限值试验研究[J]. 土木工程学报, 2010, 43 (6): 57- 66
LIU Yang, GUO Zi-xiong, OUYANG Wen-jun, et al Experimental study of the seismic behavior and axial compression ratio limit of CSRC columns[J]. China Civil Engineering Journal, 2010, 43 (6): 57- 66
[15]   金向前. 配有圆钢管的钢骨混凝土柱抗震性能试验研究[C] // 第十届全国结构工程学术会议论文集: 第Ⅲ卷. 南京: 中国力学学会, 2001: 6.
Jin Xiang-qian. Experimental study on seismic behavior of src columns with circular steel tubes [C]// Proceedings of the 10th National Conference on Structural Engineering: Vol. Ⅲ. Nanjing: CSTAM, 2001: 6
[16]   陈小刚, 牟在根, 张举兵, 等 型钢混凝土柱抗震性能实验研究[J]. 北京科技大学学报, 2009, 31 (12): 1516- 1524
CHEN Xiao-gang, MOU Zai-gen, ZHANG Ju-bing, et al Experimental study on the seimic behavior of steel reinforced concrete columns[J]. Journal of University of Seience and Technology Beijing, 2009, 31 (12): 1516- 1524
doi: 10.3321/j.issn:1001-053X.2009.12.006
[17]   赵桂峰, 李瑶亮, 张猛, 等 锈蚀钢筋混凝土框架柱滞回性能的数值模拟研究[J]. 世界地震工程, 2014, 30 (2): 71- 79
ZHAO Gui-feng, LI Yao-liang, ZHANG Meng, et al Numerical simulation research on hysteresis performance of the corroded reinforced concrete frame columns[J]. Word Earthquake Engineering, 2014, 30 (2): 71- 79
[18]   国家质检总局. 混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2010.
[19]   ACI 318 Committee. Building code requirements for structural concrete (ACI 318—05) and commentary (ACI 318R—05) [S]. Farmington Hills: American Concrete Institute, 2005.
[20]   MANDER J B, PRIESTLEY M J N, PARK R Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114 (8): 1804- 1826
doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
[21]   刘威, 韩林海.ABAQUS分析钢管混凝土轴压性能的若干问题研究[J]. 哈尔滨工业大学学报, 2005, 37(增1): 157–160.
LIU Wei, HAN Lin-hai. Investigation in some problems of behaviors of concrete filled steel tubes subject axial local compression by ABAQUS method[J]. Journal of Harbin University of Technology, 2005, 37(Suppl. 1): 157–160.
[22]   聂建国, 王宇航 ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30 (4): 59- 67
NIE Jian-guo, WANG Yu-hang Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures[J]. Engineering Mechanics, 2013, 30 (4): 59- 67
[23]   李贵乾. 钢筋混凝土桥墩抗震性能试验研究及数值分析[D]. 重庆: 重庆交通大学, 2010.
LI Gui-qian. Experimental study and numerical analysis on seismic performance of reinforced concrete bridge columns [D]. Chongqing: Chongqing Jiaotong University, 2010.
[1] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[2] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[3] Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.
[4] Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.
[5] Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.
[6] Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.
[7] Zhong YUN,Meng WEN,Zi-rong LUO,Long CHEN. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 407-415.
[8] Si-yuan XU,Jun DU,Guang-xi ZHAO,Zheng-ying WEI. Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2224-2232.
[9] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.
[10] Shi-wei LI,Yong-qing YANG,Qian-hui PU,Bo SUN. Nonlinear creep effect analysis for short concrete-filled circular steel tubular columns under axial compression[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1083-1091.
[11] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.
[12] Zhong YUN,Meng WEN,Yi JIANG,Long CHEN,Long-fei FENG. Design and hydrodynamic analysis of pectoral fin oscillation propulsion mechanism of bionic manta ray[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 872-879.
[13] Yun-peng CHU,Xiu-li WANG,Yong YAO. Experimental research on seismic behavior of thin cold-formed steel wall–floor connections[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 732-742.
[14] Yu-qi HUANG,Pan MEI,Xiao-ji CHEN,Chang-shui DENG. Heating strategy for electric vehicular battery pack based on CFD analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 207-213.
[15] Jin XIA,Shi-jie JIN,Xiao-yu HE,Xiao-mei XU,Wei-liang JIN. Effect of electric potential condition on numerical simulation of electrochemical rehabilitation for concrete structures[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2298-2308.