Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (2): 207-213    DOI: 10.3785/j.issn.1008-973X.2019.02.001
Energy Engineering     
Heating strategy for electric vehicular battery pack based on CFD analysis
Yu-qi HUANG1(),Pan MEI1,Xiao-ji CHEN2,*(),Chang-shui DENG2
1. College of Energy Engineering, Zhejiang University, Hangzhou 310017, China
2. Fujian E-power Electronic Technology Co. Ltd, Longyan 364101, China
Download: HTML     PDF(1359KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The performance of lithium batteries relies significantly on the ambient temperature. They often become ineffective or demonstrate a shortened lifespan at low temperatures. Therefore, designing an effective, uniform, and energy-efficient heating system for the battery pack becomes the key to the development of electric vehicles in northern environment. The method of numerical simulation adopted from computational fluid dynamics (CFD) was introduced, and the porous theory was used to conduct a simplified analysis of battery module in the battery pack. The rise of temperature during the heating process of the battery pack of electric vehicles was simulated, and the simulation and experimental results were compared. Results showed that the combination of simulation method and porous simplification model was effective in evaluating the heating system of electric vehicle battery pack. The heating strategy was modified based on the analysis results, and a heating system that consisted of multiple heating zones was designed, which can keep the heating power of each part in control. Results showed that there was an overall power reduction of 167 W (about 7%) under the optimized multi-zone heating system, and the battery pack can still be heated from ?13 °C to 5 °C within 50 minutes, with the maximum temperature difference within the zones of the battery pack being kept under 5 °C.



Key wordslithium battery      heating      numerical simulation      porous simplification      experimental verification     
Received: 10 January 2018      Published: 21 February 2019
CLC:  TU 111  
Corresponding Authors: Xiao-ji CHEN     E-mail: huangyuqi@zju.edu.cn;epower_cxj@163.com
Cite this article:

Yu-qi HUANG,Pan MEI,Xiao-ji CHEN,Chang-shui DENG. Heating strategy for electric vehicular battery pack based on CFD analysis. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 207-213.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.02.001     OR     http://www.zjujournals.com/eng/Y2019/V53/I2/207


基于CFD分析的电动汽车电池包加热方法

锂离子电池对温度环境要求严苛,在低温下常出现失效、寿命衰退等现象. 因此,为电池包设计高效、均匀且节能的加热方案,成为电动汽车在北方环境下发展的关键. 引入计算流体动力学(CFD)的仿真计算方法,并采用多孔介质理论对电池包中电池模块进行简化分析,对电动汽车电池包在加热过程中的温升特性进行仿真分析计算,将仿真计算结果与实测数据进行对比验证,证明所采用的仿真方法及多孔介质简化模型可有效应用于电动汽车电池包的加热方案评估. 根据分析结果对加热方案提出修正,并设计分块化的加热方案,即对局部加热功率进行控制. 计算结果显示,优化后的分块加热方案,在总体功率降低167 W(约7%)的情况下,仍然可在50 min内将电池包从?13 °C加热到5 °C,并且将电池包中电池区域最大温差控制在5 °C以内.


关键词: 锂离子电池,  加热,  仿真计算,  多孔介质简化,  实验验证 
Fig.1 Physical model of battery pack and assembly physical map of batteries
Fig.2 Hexahedral mesh model of battery pack for simulation analysis
Fig.3 Grid independent test of calculation model
参数 参数取值
注:1) 将电芯考虑为多孔介质后,取均值1.8作为综合导热系数.
内含电芯个数 4 320
单电芯体积/m3 1.654×10?5
环境温度/°C ?13
目标温度/°C 5
电池包体积/m3 0.228
空气体积/m3 0.1(估算)
电芯总体积/m3 0.071 45
塑料件、电线、传感器、插头等配件体积/m3 0.056 55(估算)
电池包外壳对流换热系数/(W·m?2·K?1 5~20,仿真计算取5[23-25]
电池包外壳表面积/m2 2.844 5
电芯物性参数 密度/(kg·m?3 2 018
比热容/
(J·kg?1·K?1
1 282
导热系数/
(W·m?1·K?1
0.9(径向),2.7(周向/
轴向)1)
硅胶加热材料物性参数 密度/(kg·m?3 1 180
比热容/
(J·kg?1·K?1
1 750
导热系数/
(W·m?1·K?1
4
外壳及加热块(钢)物性参数 密度/(kg·m?3 8 030
比热容/
(J·kg?1·K?1
502.48
导热系数/
(W·m?1·K?1
16.27
Tab.1 Calculation parameters of battery pack
Fig.4 Relative position of heating plates and test points of battery pack
Fig.5 Picture of thermostatic chamber for test
Fig.6 Schematic diagram of temperature and velocity distribution of battery pack
Fig.7 Comparison curve of simulation and test temperature at measuring points
Fig.8 Temperature distribution of measured points at different moments in original heating system
Fig.9 Heating power arrangement of optimized system under non-uniform heating condition
W
方案类型 名称 加热功率
分块1 分块2 分块3 分块4 分块5 分块6 分块7 分块8
注:B'板为最外侧的2块B型板
原方案 A板 31.70 31.70 31.70 31.70 31.70 31.70 ? ?
B板 31.25 31.25 31.25 31.25 31.25 31.25 31.25 31.25
A板 23.00 23.00 20.70 20.70 23.00 23.00 ? ?
优化方案 B板 36.00 36.00 34.00 34.00 34.00 34.00 32.00 32.00
B'板 36.00 36.00 34.00 34.00 34.00 34.00 23.00 23.00
C板 23.00 23.00 20.70 20.70 20.70 20.70 23.00 23.00
Tab.2 Arrangement of heating efficiency at multi-zone plates in original and optimized system
Fig.10 Positions of different heating plates of battery pack of optimized system
Fig.11 Temperature distribution of mid-profile of battery zone of optimized system
Fig.12 Simulated temperature elevating curves of typical points of optimized system
[1]   霍宇涛, 饶中浩, 赵佳腾, 等 低温环境下电池热管理研究进展[J]. 新能源进展, 2015, 3 (1): 53- 57
HUO Yu-tao, RAO Zhong-hao, ZHAO Jia-teng, et al Research development of battery thermal management at low temperature[J]. Advances in New and Renewable Energy, 2015, 3 (1): 53- 57
doi: 10.3969/j.issn.2095-560X.2015.01.009
[2]   ZHANG X W, KONG X, LI G J, et al Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions[J]. Energy, 2014, 64: 1092- 1101
doi: 10.1016/j.energy.2013.10.088
[3]   RAO Z H, WANG S F, ZHANG G Q Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery [J]. Energy Conversion and Management, 2011, 52 (12): 3408- 3414
doi: 10.1016/j.enconman.2011.07.009
[4]   RAO Z H, WANG S F A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15 (9): 4554- 4571
doi: 10.1016/j.rser.2011.07.096
[5]   饶中浩. 基于固液相变传热介质的动力电池热管理研究[D]. 广州: 华南理工大学, 2013.
RAO Zhong-hao. Research on power battery thermal management based onsolid-liquid phase change heat transfer medium [D]. Guangzhou: South China University of Technology, 2013.
[6]   DUAN X, NATERER G F Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer, 2010, 53 (23/24): 5176- 5182
[7]   RAO Z, WANG S, ZHANG Y Thermal management with phase change material for a power battery under cold temperatures[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36 (20): 2287- 2295
doi: 10.1080/15567036.2011.576411
[8]   HUO Y, RAO Z Investigation of phase change material based battery thermalmanagement at cold temperature using lattice Boltzmann method[J]. Energy Conversion and Management, 2017, 133: 204- 215
doi: 10.1016/j.enconman.2016.12.009
[9]   PESARAN A, VLAHINOS A, STUART T. Cooling and preheating of batteries in hybrid electric vehicles [C] // Proceedings of the 6th ASME-JSME Thermal Engineering Joint Conference. Hawaii: [s. n.], 2003: 1–7.
[10]   COSLEY M R, GARCIA M P. Battery thermal management system [C] // Proceedings of the INTELEC 26th Annual International Telecommunications Energy Conference. Chicago: [s. n.], 2004: 38–45.
[11]   HANDE A, STUART T A. AC heating for EV/HEV batteries [C]// Proceedings of the Power Electronics in Transportation. Portugal: [s. n.], 2002: 119–124.
[12]   HANDE A Internal battery temperature estimation using series battery resistance measurements during cold temperatures[J]. Journal of Power Sources, 2006, 158 (2): 1039- 1046
doi: 10.1016/j.jpowsour.2005.11.027
[13]   HANDE A. A high frequency inverter for cold temperature battery heating [C] // Proceedings of the 2004 IEEE Workshop on Computers in Power Electronics. Portugal: IEEE, 2004: 215–222.
[14]   张承宁, 雷治国, 董玉刚 电动汽车锂离子电池低温加热方法研究[J]. 北京理工大学学报, 2012, 39 (9): 921- 925
ZHANG Cheng-ning, LEI Zhi-guo, DONG Yu-gang Method for heating low-temperature lithium battery in electric vehicle[J]. Transactions of Beijing Institute of Technology, 2012, 39 (9): 921- 925
doi: 10.3969/j.issn.1001-0645.2012.09.009
[15]   LEFEBVRE L Smart battery thermal management for PHEV efficiency[J]. Oil and Gas Science and Technology-Revue D IFP Energies Nouvelles, 2013, 68 (1): 149- 164
[16]   FLIPSE J, BAKKER F L, SLACHTER A, et al Direct observation of the spin-dependent Peltier effect[J]. Nature Nanotechnology, 2012, 7 (3): 166- 168
doi: 10.1038/nnano.2012.2
[17]   WIJNGAARDS D D L, WOLFFENBUTTEL R F Study on temperature stability improvement of on-chip reference elements using integrated Peltier coolers[J]. IEEE Transactions on Instrumentation and Measurement, 2003, 52 (2): 478- 482
doi: 10.1109/TIM.2003.810004
[18]   TROXLER Y, WU B, MARINESCU M, et al The effect of thermal gradients on the performance of lithium-ion batteries[J]. Journal of Power Sources, 2014, 247: 1018- 1025
doi: 10.1016/j.jpowsour.2013.06.084
[19]   SALAMEH Z M, ALAOUI C. Modeling and simulation of a thermal management system for electric vehicles [C] // Proceedings of the Industrial Electronics Society. Roanoke: IEEE, 2003: 887–890.
[20]   ALAOUI C, SALAMEH Z M A novel thermal management for electric and hybrid vehicles[J]. IEEE Transactions on Vehicular Technology, 2005, 54 (2): 468- 476
doi: 10.1109/TVT.2004.842444
[21]   LEE D Y, CHO C W, WON J P, et al Performance characteristics of mobile heat pump for a large passenger electric vehicle[J]. Applied Thermal Engineering, 2013, 50 (1): 660- 669
doi: 10.1016/j.applthermaleng.2012.07.001
[22]   袁昊, 王丽芳, 王立业 基于液体冷却和加热的电动汽车电池热管理系统[J]. 汽车安全与节能学报, 2012, 3 (4): 371- 380
YUAN Hao, WANG Li-fang, WANG Li-ye Battery thermal management system with liquid cooling and heating in electric vehicles[J]. Journal of Automotive Safety and Energy, 2012, 3 (4): 371- 380
doi: 10.3969/j.issn.1676-8484.2012.04.011
[23]   PESARAN A, KEYSER M, BURCH S. An approach for designing thermal managementsystems for electric and hybrid vehicle battery packs [C]// Proceeding of the 4th Vehicle Thermal Management Systems Conference and Exhibition. London: Professional Engineering Publishing Ltd, 1999.
[24]   ZHU C, LI X, SONG L, et al Development of a theoretically based thermalmodel for lithium-ion battery pack[J]. Journal of Power Sources, 2013, 223: 155- 164
doi: 10.1016/j.jpowsour.2012.09.035
[1] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[2] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[3] Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.
[4] Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.
[5] Kai ZHU,Yun-he WANG,Xue-wei QIN,Ya-dong HUANG,Qiang WANG,Ke WU. Effect of heating rate on asphalt combustion and gaseous products release characteristics[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1805-1811.
[6] Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.
[7] Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.
[8] Zhong YUN,Meng WEN,Zi-rong LUO,Long CHEN. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 407-415.
[9] Si-yuan XU,Jun DU,Guang-xi ZHAO,Zheng-ying WEI. Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2224-2232.
[10] Jiang LU,Deng-hui WANG,Kang ZHAO,Shi-yun LIU. Experimental performance of intermittent space heating with different terminals in a self-thermal insulation building[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2092-2099.
[11] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.
[12] Jian GE,Deng-hui WANG,Kang ZHAO. Influencing factors on infiltration rate of heating rooms in hot summer and cold winter zone[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1415-1422.
[13] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.
[14] Zhong YUN,Meng WEN,Yi JIANG,Long CHEN,Long-fei FENG. Design and hydrodynamic analysis of pectoral fin oscillation propulsion mechanism of bionic manta ray[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 872-879.
[15] Wen-liang QIU,Ha-si HU,Tian TIAN,Zhe ZHANG. Structural parameters affecting seismic behavior of concrete-filled steel tube composite piers[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 889-898.