Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (9): 1706-1714    DOI: 10.3785/j.issn.1008-973X.2020.09.006
    
Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement
Song-song YANG1(),Mei WANG1,*(),Jian-an DU2,Yong GUO3,Yan GEN1
1. College of Mining Engineering, Taiyuan University of Technology, Taiyuani 030024, China
2. Shanxi Provincial Housing and Urban-Rural Construction Committee, Taiyuan 030024, China
3. China Railway 14th Bureau Group Co. Ltd, Tai’an 271000, China
Download: HTML     PDF(1453KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Taiyuan Railway Station’s application of the large-diameter pipe-roof pre-construction method (PPM) was used as the engineering background. A finite difference method software (FLAC3D) was employed to numerically simulate the eight representative pipe jacking construction sequences, to study the surface deformation characteristics under the construction sequence of the large diameter pipe jacking group. The test results show that the surface settlement caused by the first construction of the pipe jacking scheme was less than other schemes, and the ground settlement caused by the construction scheme was 1 cm smaller than that of the construction scheme of the pipe jacking scheme first. An inter-pipe soil arch was formed between the upper row of jacking pipes on the pipe-roof and the surrounding soil, and a combined soil arching effect was formed between the dense row of jacking pipes above the upper pipe. The pipe soil arching effect can not only bear part of the overburden load of the pipe roof, but also reduce the disturbance of the ground surface caused by the construction of the pipe jacking under the pipe-roof. The combined soil arching effect can effectively reduce the ground surface settlement caused by the construction of the dense row pipe jacking group with the pipe-roof pre-construction method.



Key wordspipe-roof pre-construction method (PPM)      densely packed pipe jacking group      pipe jacking sequence      combined soil arching effect      numerical simulation     
Received: 23 August 2019      Published: 22 September 2020
CLC:  TU 94  
Corresponding Authors: Mei WANG     E-mail: 18435167584@163.com;wangmei@tyut.edu.com
Cite this article:

Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.09.006     OR     http://www.zjujournals.com/eng/Y2020/V54/I9/1706


管幕预筑法顶管施工顺序对地表沉降的影响

以太原火车站管幕预筑法(PPM)大直径顶管群施工为背景,采用有限差分软件FLAC3D对优选的8种有代表性的顶管群施工顺序进行数值模拟,研究不同大直径顶管群施工顺序下的地表变形特征. 试验结果表明:先施工管幕上排顶管的方案所引起的地表沉降量小于其他方案,与先施工管幕下排顶管的施工方案相比,其所引起的地表沉降要小1 cm;管幕上排顶管与周围土体之间形成管间微型土拱,并在管幕上方密排顶管之间形成组合土拱效应. 该组合土拱效应不仅可以承担一部分管幕上覆荷载,而且可以减小管幕下排顶管施工对地表的扰动,有效减小了管幕预筑法密排顶管群施工所引起的地表沉降.


关键词: 管幕预筑法(PPM),  密排顶管群,  顶管顺序,  组合土拱效应,  数值模拟 
Fig.1 Diagram for construction process of pipe-roof pre-construction method
Fig.2 Location of underground passage from north to south of railway station
层号 地层名称 颜色 状态 L1/m L2/m
1-1 杂填土 杂色 松散~稍密 地表可见 1.5~9.6
1-2 素填土 黄褐色 松散~稍密 0~4.6 4.0~9.6
2-1 新黄土 黄褐色 软塑 5.6~15.4 3.5~15.9
2-2 新黄土 黄褐色 硬塑 12.5~26.6 29.9
Tab.1 Distribution of engineering geological layers
Fig.3 Pipe jacking position in north passage of railway station
Fig.4 North passage waterproof steel pipe-roof
Fig.5 Distribution of settlement monitoring points in north passage of railway station
Fig.6 Settlement curve of measured track and platform of railway station
土类名称 h/m ρ/(g·cm?3) γ/(kN·m?3) c/kPa φ/(°) μ E/MPa
填土 9.6 2.02 19.81 10.00 9.00 0.4 16.7
黄土 5.4 1.96 19.2 30.69 18.03 0.4 25.6
Tab.2 On-site soil physical and mechanical parameters
Fig.7 Pipe jacking scheme with complicated construction plan
mm
方案 S0 S10 S20
方案一 35.6 37.2 38.0
方案二 34.0 36.8 37.5
方案三 40.2 38.8 39.6
方案四 44.8 46.2 42.0
方案五 43.4 46.2 44.8
方案六 42.2 46.2 44.8
方案七 40.2 42.2 42.8
方案八 38.6 39.2 38.9
Tab.3 Prediction of accumulated surface settlement caused by different schemes
Fig.8 Surface settlement prediction results where is 10 m from starting position by eight schems
Fig.9 Accumulated surface deformation prediction for central axis by three schemes
Fig.10 Surface settlement simulation and measured curves for pipe jacking construction of track 10
Fig.11 Vertical displacement contour of two schemes
Fig.12 Schematic diagram of inter-pipe soil arch model and pipe soil arching model
[1]   YANG X, LI Y S Research of surface settlement for a single arch long-span subway station using the pipe-roof pre-construction method[J]. Tunnelling and Underground Space Technology, 2018, 72: 210- 217
doi: 10.1016/j.tust.2017.11.024
[2]   PARK I J, KWAK C W, KIM S W, et al Verification and general behaviour of Tubular Roof & Trench method (TR&T) by numerical analysis in Korea[J]. Tunnelling and Underground Space Technology, 2006, 21 (3/4): 394
doi: 10.1016/j.tust.2005.12.205
[3]   ZHANG P, MA B S, ZENG C Key techniques for the largest curved pipe jacking roof to date: a case study of Gongbei tunnel[J]. Tunnelling and Underground Space Technology, 2016, 59: 134- 145
doi: 10.1016/j.tust.2016.07.001
[4]   邢凯, 陈涛, 黄常波 新管幕工法概述[J]. 城市轨道交通研究, 2009, 12 (8): 63- 67
XING Kai, CHEN Tao, HUANG Chang-bo On new tubular roof method[J]. Urban Mass Transit, 2009, 12 (8): 63- 67
doi: 10.3969/j.issn.1007-869X.2009.08.019
[5]   黎永索. 管幕预筑地铁站大开挖施工力学效应研究[D]. 长沙: 中南大学, 2012.
LI Yong-suo. Research of construction mechanics effects during large excavation to the subway stations built pipe-roof pre-construction method [D]. Changsha: Central South University, 2012.
[6]   杨仙, 张可能, 李钟, 等 地铁车站新预筑法施工中顶管间距的优化设[J]. 中国铁道科学, 2011, 32 (2): 61- 66
YANG Xian, ZHANG Ke-neng, LI Zhong, et al Optimal design of distance between jacking pipes of new pre-construction method in metro station[J]. China Railway Science, 2011, 32 (2): 61- 66
[7]   杨仙, 张可能, 李钟 管幕预筑法中钢管顶进对地面沉降的影响[J]. 沈阳工业大学学报, 2012, (4): 469- 473
YANG Xian, ZHANG Ke-neng, LI Zhong Influence of steel pipe jacking on earth surface settlement in pipe roof pre-construction method[J]. Journal of Shenyang University of Technology, 2012, (4): 469- 473
[8]   张可能, 彭环云, 许庆伟 管幕预筑法竖井开挖与顶管施工过程数值模拟分析[J]. 中国有色金属学报, 2012, 22 (3): 985- 990
ZHANG Ke-neng, PENG Huan-yun, XU Qing-wei Numerical simulation on construction process of working well and pipe jacking by pipe-roof pre-construction method[J]. Chinese Journal of Nonferrous Metals, 2012, 22 (3): 985- 990
[9]   王杨 地铁围护结构密排大直径顶管合理间距的选取[J]. 特种结构, 2013, (4): 98- 102
WANG Yang Selection of reasonable spacing of large-diameter pipe jacking for subway envelope structure[J]. Special Structure, 2013, (4): 98- 102
[10]   杨慧林 北京地区采用新管幕工法修建深埋地铁暗挖车站方案初探[J]. 铁道标准设计, 2012, (12): 72- 77
YANG Hui-lin Study on the scheme of constructing deep-buried subway underground excavation station by using new pipework method in Beijing[J]. Railway Standard Design, 2012, (12): 72- 77
[11]   黎永索, 张可能, 黄常波, 等 管幕预筑隧道地表沉降分析[J]. 岩土力学, 2011, 32 (12): 3701- 3707
LI Yong-suo, ZHANG Ke-neng, HUANG Chang-bo, et al Analysis of surface subsidence of tunnel built by pipe-roof pre-construction method[J]. Rock and Soil Mechanics, 2011, 32 (12): 3701- 3707
doi: 10.3969/j.issn.1000-7598.2011.12.027
[12]   阎石, 金春福, 钮鹏 新管幕工法大直径钢顶管施工力学特性数值模拟分析[J]. 施工技术, 2009, (S2): 376- 380
YAN Shi, JIN Chun-fu, NIU Peng Numerical simulation mechanical performance of steel pipes during new tubular roof construction[J]. Construction Technology, 2009, (S2): 376- 380
[13]   HISATAKE M, OHNO S Effects of pipe roof supports and the excavation method on the displacements above a tunnel face[J]. Tunnelling and Underground Space Technology, 2008, 23 (2): 120- 127
doi: 10.1016/j.tust.2007.02.002
[14]   杨仙. 管幕预筑法中密排大直径钢管群顶进研究[D]. 长沙: 中南大学, 2012.
YANG Xian. Reaserch of large diameter jacking-pipes with small space in pipe-roof pre-construction method [D]. Central South University, 2012.
[15]   喻军, 李元海 顶管泥浆套的物理性质对顶推力的影响[J]. 土木工程学报, 2015, (S2): 327- 331
YU Jun, LI Yuan-hai Effect of physical properties of mud screen of pipe-jacking on jacking force[J]. China Civil Engineering Journal, 2015, (S2): 327- 331
[16]   李晓娇, 欧阳煜 不同土质中隧道埋深对地表沉降的影响[J]. 佳木斯大学学报: 自然科学版, 2015, (33): 202- 206
LI Xiao-jiao, OUYANG Yu Response of ground surface settlement due to tunnel depth in different soil[J]. Journal of Jiamusi University: Natural Science Edition, 2015, (33): 202- 206
[17]   李剑. 管幕冻结施工工法研究与应用[D]. 西安: 长安大学, 2015.
LI Jian. Research and application of freeze-sealing pipe roof construction method [D]. Xi’an: Chang’an University, 2015.
[18]   刘营. 顶管施工对周围土体扰动范围影响研究[D]. 郑州: 郑州大学, 2016.
LIU Ying. Research on the influence of surrounding soil disturbance caused by pipe jacking [D]. Zhengzhou: Zhengzhou University, 2016.
[1] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[2] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[3] Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.
[4] Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.
[5] Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.
[6] Zhong YUN,Meng WEN,Zi-rong LUO,Long CHEN. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 407-415.
[7] Si-yuan XU,Jun DU,Guang-xi ZHAO,Zheng-ying WEI. Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2224-2232.
[8] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.
[9] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.
[10] Zhong YUN,Meng WEN,Yi JIANG,Long CHEN,Long-fei FENG. Design and hydrodynamic analysis of pectoral fin oscillation propulsion mechanism of bionic manta ray[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 872-879.
[11] Wen-liang QIU,Ha-si HU,Tian TIAN,Zhe ZHANG. Structural parameters affecting seismic behavior of concrete-filled steel tube composite piers[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 889-898.
[12] Yu-qi HUANG,Pan MEI,Xiao-ji CHEN,Chang-shui DENG. Heating strategy for electric vehicular battery pack based on CFD analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 207-213.
[13] Jin XIA,Shi-jie JIN,Xiao-yu HE,Xiao-mei XU,Wei-liang JIN. Effect of electric potential condition on numerical simulation of electrochemical rehabilitation for concrete structures[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2298-2308.
[14] Yu XIANG,Shu-zhe ZHANG,Jun-feng LI,Zheng-ying WEI,Li-xiang YANG,Li-hao JIANG. Numerical simulation and experimental verification for selective laser single track melting forming of Ti6Al4V[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2102-2109.
[15] CHEN Wen-zhuo, CHEN Yan, ZHANG Wei-ming, HE Shao-wei, LI Bo, JIANG Jun-ze. Numerical simulation for dynamic air spray painting of arc surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2406-2413.