Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (2): 381-388    DOI: 10.3785/j.issn.1008-973X.2020.02.020
Mechanical and Energy Engineering     
Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus
Ya-bo YU(),Ya-dong DENG*()
School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China
Download: HTML     PDF(1374KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A three-dimensional hydrogen leakage and diffusion model of the high voltage cabin of fuel cell bus was established for investing the effect of the ventilation area and the ventilation grilles layout on the hydrogen leakage and diffusion of the high voltage cabin of fuel cell bus. The numerical simulation method was used, and the results showed that for the mentioned high voltage cabin, when the total ventilation area was 0.096 m2, it took 25 s from hydrogen started leaking to the hydrogen mole fraction inside the cabin dropped below the safety value. While the total ventilation area was 0.128 m2, it took 21 s. The increase in the ventilation area can significantly accelerate the diffusion of hydrogen in the cabin. When the total ventilation area is constant, compared with increasing the area of a single ventilation grille, increasing the number of ventilation grilles in the vertical direction can make the leaked hydrogen diffuse out of the cabin more quickly and effectively. Study reveals the hydrogen leakage and diffusion process in the high voltage cabin. When hydrogen leakage occurs inside the high voltage cabin, the leaked hydrogen diffuses to the top along both sides of the cabin, and accumulates at the highest point on the left and right sides. The hydrogen concentration sensor should be placed at the highest point on the left and right sides of the cabin.



Key wordsfuel cell bus      hydrogen safety      leakage and diffusion      ventilation grille      numerical simulation     
Received: 27 May 2019      Published: 10 March 2020
CLC:  U 473.25  
Corresponding Authors: Ya-dong DENG     E-mail: yabo94@163.com;dengyadong@sina.com
Cite this article:

Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.02.020     OR     http://www.zjujournals.com/eng/Y2020/V54/I2/381


燃料电池客车高压舱氢气泄漏扩散

为了探究通风面积和通风格栅的布置方式对燃料电池客车高压舱氢气泄漏扩散的影响,建立三维高压舱氢气泄漏扩散模型. 利用数值模拟方法进行研究,结果表明,针对所提到的燃料电池客车高压舱,当总通风面积为0.096 m2时,从氢气开始泄漏到舱内氢气摩尔分数降至安全值以下,所需时间为25 s;当总通风面积为0.128 m2时,所需时间为21 s. 通风面积的增加可以显著加快舱内氢气的扩散. 当通风总面积一定时,相对于增大单个通风格栅的面积,在垂直方向上增加通风格栅的数量能够更加快速有效地使泄漏出的氢气排至舱外. 研究揭示了高压舱内氢气的泄漏扩散过程. 当高压舱内部发生氢气泄漏时,泄漏出的氢气沿舱室两侧向顶部扩散,并在左右两侧最高处聚集,应将氢气浓度传感器布置在舱室左右两侧最高处.


关键词: 燃料电池客车,  氢安全,  泄漏与扩散,  通风格栅,  数值模拟 
Fig.1 Analysis diagram of hydrogen leakage consequences
Fig.2 High voltage cabin layout of fuel cell bus
Fig.3 Simplified model of high voltage cabin
Fig.4 Schematic diagram of computational domain and grids
Fig.5 Structural diagram of under-expanded hydrogen jet and shock
Fig.6 Mole fraction on centerline of hydrogen jet
Fig.7 Mole fraction in radial direction of hydrogen jet
布置方式 数量 尺寸/mm S/m2
1 4×2 20×400 0.064
2 6×2 20×400 0.096
3 8×2 20×400 0.128
4 4×2 20×600 0.096
5 4×2 20×800 0.128
Tab.1 Ventilation grille parameters
Fig.8 Schematic diagram of ventilation grilles layout
Fig.9 Relationship between hydrogen mole fraction of high voltage cabin and three ventilation areas
Fig.10 Relationship between ventilation grilles layout and hydrogen mole fraction inside high voltage cabin
Fig.11 Relationship between hydrogen mole fraction inside high voltage cabin and leakage time
Fig.12 Hydrogen mole fraction contours inside high voltage cabin under layout two
[1]   冯文, 王淑娟, 倪维斗, 等 氢能的安全性和燃料电池汽车的氢安全问题[J]. 太阳能学报, 2003, 24 (5): 677- 682
FENG Wen, WANG Shu-juan, NI Wei-dou, et al The safety of hydrogen energy and fuel cell vehicles[J]. Journal of Solar Energy, 2003, 24 (5): 677- 682
doi: 10.3321/j.issn:0254-0096.2003.05.020
[2]   刘延雷, 秦永泉, 盛水平, 等 燃料车内氢气泄漏扩散数值模拟研究[J]. 中国安全生产科学技术, 2009, 5 (5): 5- 8
LIU Yan-lei, QIN Yong-quan, SHENG Shui-ping, et al Numerical investigation on dispersion of hydrogen in hydrogen powered automobiles[J]. Journal of Safety Science and Technology, 2009, 5 (5): 5- 8
[3]   李云浩, 喻源, 张庆武 车库内氢气扩散和分布状态的数值模拟[J]. 安全与环境学报, 2017, 17 (5): 1884- 1889
LI Yun-hao, YU Yuan, ZHANG Qing-wu Numerical simulation for the hydrogen dispersion and distribution behaviors in the garage context[J]. Journal of Safety and Environment, 2017, 17 (5): 1884- 1889
[4]   卢明, 徐晔, 肖学章 室内氢气泄漏扩散的数值模拟[J]. 中国安全生产科学技术, 2011, 7 (8): 29- 33
LU Ming, XU Ye, XIAO Xue-zhang Numerical simulation on the leakage and diffusion of hydrogen in indoor environment[J]. Journal of Safety Science and Technology, 2011, 7 (8): 29- 33
[5]   李峰, 袁裕鹏, 严新平, 等 燃料电池船舶舱内氢气泄漏数值模拟研究[J]. 交通信息与安全, 2017, 35 (6): 60- 66
LI Feng, YUAN Yu-peng, YAN Xin-ping, et al A study on numerical simulation of hydrogen leakage in cabin of fuel cell ship[J]. Journal of Transportation Information and Safety, 2017, 35 (6): 60- 66
doi: 10.3963/j.issn.1674-4861.2017.06.009
[6]   郑津洋, 刘延雷, 徐平, 等 障碍物对高压储氢罐泄漏扩散影响的数值模拟[J]. 浙江大学学报: 工学版, 2008, 42 (12): 2177- 2180
ZHENG Jin-yang, LIU Yan-lei, XU Ping Numerical simulation of obstacle influence on leakage and diffusion of hydrogen due to high-pressure storage tank failure[J]. Journal of Zhejiang University: Engineering Science, 2008, 42 (12): 2177- 2180
[7]   李静媛, 赵永志, 郑津洋 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报: 工学版, 2015, 49 (7): 1389- 1394
LI Jing-yuan, ZHAO Yong-zhi, ZHENG Jin-yang Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refueling station[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (7): 1389- 1394
[8]   李雪芳, 何倩, 柯道友, 等 高压氢气小孔泄漏射流分层流动模型与验证[J]. 清华大学学报: 自然科学版, 2018, 58 (12): 1095- 1100
LI Xue-fang, HE Qian, CHRISTOPHER D M, et al Validation of flow partitioning model for high pressure hydrogen jets through small orifices[J]. Journal of Tsinghua University: Science and Technology, 2018, 58 (12): 1095- 1100
[9]   李雪芳, 王俞杰, 罗峰, 等 欠膨胀氢气射流激波结构数值模拟研究[J]. 工程热物理学报, 2018, 39 (4): 880- 886
LI Xue-fang, WANG Yu-jie, LUO Feng, et al Numerical simulation of shock structures of under-expanded hydrogen jet[J]. Journal of Engineering Thermophysics, 2018, 39 (4): 880- 886
[10]   CHOI J, HUR N, KANG S, et al A CFD simulation of hydrogen dispersion for the hydrogen leakage from afuel cell vehicle in anunderground parking garage[J]. International Journal of Hydrogen Energy, 2013, 38 (19): 8084- 8091
doi: 10.1016/j.ijhydene.2013.02.018
[11]   HAJJI Y, BOUTERAA M, ELCAFSI A, et al Natural ventilation of hydrogen during a leak in a residential garage[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 810- 818
doi: 10.1016/j.rser.2015.05.060
[12]   MATSUURA K Effects of the geometrical configuration of a ventilation system on leaking hydrogen dispersion and accumulation[J]. International Journal of Hydrogen Energy, 2009, 34 (24): 9869- 9878
doi: 10.1016/j.ijhydene.2009.09.044
[13]   BIE H Y, HAO Z R Simulation analysis on the risk of hydrogen releases and combustion in subsea tunnels[J]. International Journal of Hydrogen Energy, 2017, 42 (11): 7617- 7624
doi: 10.1016/j.ijhydene.2016.05.263
[14]   HAN U, OH J, LEE H Safety investigation of hydrogen charging platform package with CFD simulation[J]. International Journal of Hydrogen Energy, 2018, 43 (29): 13687- 13699
doi: 10.1016/j.ijhydene.2018.05.116
[15]   刘诗飞, 詹予忠. 重大危险源辨识及危害后果分析[M]. 北京: 化学工业出版社, 2004: 57-58.
[16]   余照. 氢泄漏与扩散数值仿真研究[D]. 长沙: 国防科学技术大学, 2008.
YU Zhao. Numerical simulation of leak and diffusion of hydrogen [D]. Changsha: National University of Defense Technology, 2008.
[17]   GUPTA S, BRINSTER J, STUDER E, et al Hydrogen related risks within a private garage: concentration measurements in a realistic full scale experimental facility[J]. International Journal of Hydrogen Energy, 2009, 34 (14): 5902- 5911
doi: 10.1016/j.ijhydene.2009.03.026
[18]   董玉华, 周敬恩, 高惠临, 等 长输管道稳态气体泄漏率的计算[J]. 油气储运, 2002, 21 (8): 11- 15
DONG Yu-hua, ZHOU Jing-en, GAO Hui-lin, et al Estimation of steady state gas release flow rate in long distance pipeline[J]. Oil and Gas Storage and Transportation, 2002, 21 (8): 11- 15
doi: 10.3969/j.issn.1000-8241-D.2002.08.004
[19]   李雪芳. 储氢系统意外氢气泄漏和扩散研究[D]. 北京: 清华大学, 2015.
LI Xue-fang. Dispersion of unintended subsonic and supersonic hydrogen releases fromhydrogen storage systems [D]. Beijing: Tsinghua University, 2015.
[1] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[2] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[3] Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.
[4] Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.
[5] Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.
[6] Zhong YUN,Meng WEN,Zi-rong LUO,Long CHEN. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 407-415.
[7] Si-yuan XU,Jun DU,Guang-xi ZHAO,Zheng-ying WEI. Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2224-2232.
[8] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.
[9] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.
[10] Zhong YUN,Meng WEN,Yi JIANG,Long CHEN,Long-fei FENG. Design and hydrodynamic analysis of pectoral fin oscillation propulsion mechanism of bionic manta ray[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 872-879.
[11] Wen-liang QIU,Ha-si HU,Tian TIAN,Zhe ZHANG. Structural parameters affecting seismic behavior of concrete-filled steel tube composite piers[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 889-898.
[12] Yu-qi HUANG,Pan MEI,Xiao-ji CHEN,Chang-shui DENG. Heating strategy for electric vehicular battery pack based on CFD analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 207-213.
[13] Jin XIA,Shi-jie JIN,Xiao-yu HE,Xiao-mei XU,Wei-liang JIN. Effect of electric potential condition on numerical simulation of electrochemical rehabilitation for concrete structures[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2298-2308.
[14] Yu XIANG,Shu-zhe ZHANG,Jun-feng LI,Zheng-ying WEI,Li-xiang YANG,Li-hao JIANG. Numerical simulation and experimental verification for selective laser single track melting forming of Ti6Al4V[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2102-2109.
[15] CHEN Wen-zhuo, CHEN Yan, ZHANG Wei-ming, HE Shao-wei, LI Bo, JIANG Jun-ze. Numerical simulation for dynamic air spray painting of arc surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2406-2413.