Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (6): 1092-1100    DOI: 10.3785/j.issn.1008-973X.2019.06.008
Civil and St ructural Engineering     
Identification of three-component coefficients of double deck truss girder for long-span bridge
Hao-su LIU(),Jun-qing LEI*()
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
Download: HTML     PDF(1398KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The three-component coefficients of double-deck truss girder used in long span rail-road cable-stayed bridge were investigated under wind attack angles from ?10° to 10°, with the combination of wind tunnel test and computational fluid dynamics (CFD) methods. The wind tunnel test was used to test the aerodynamic force of the main beam under different wind attack angles in completion and construction stage, and the three-component coefficients were identified. A three-dimensional numerical calculation model was established based on the standard k-ε two-equation turbulence model to identify the three-component coefficients under different wind attack angles, which were compared with the wind tunnel test results. Combing these two methods, the effects of Reynolds number, bridge attachment and highway and railway traffic conditions on the main girder aerodynamic characteristics were studied. Results show that the Reynolds number has little effect on low wind attack angle, which can be ignored, and the Reynolds number restriction was proposed to identify the three-component coefficient of the double-deck truss under high wind attack angle. The bridge deck attachment has significant influence on the drag coefficient, and the down deck appendant can effectively reduce the main beam lift coefficient. The road vehicles have less influence on the aerodynamic coefficient. The drag and lift coefficients are obviously influenced by the windward train effect, and the moment coefficient are obviously affected by leeward train.



Key wordsthree-component coefficients      wind tunnel test      numerical simulation      double-deck truss girder      rail-road cable-stayed bridge     
Received: 08 June 2018      Published: 22 May 2019
CLC:  U 24  
  U 443.3  
Corresponding Authors: Jun-qing LEI     E-mail: liuhaosu@126.com;jqlei@bjtu.edu.cn
Cite this article:

Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.06.008     OR     http://www.zjujournals.com/eng/Y2019/V53/I6/1092


大跨度双层桁架主梁三分力系数识别

采用风洞试验与计算流体力学(CFD)相结合的方法,对某公铁两用斜拉桥双层桁架主梁在?10°~10°风攻角下的三分力系数进行研究. 利用风洞试验技术测试成桥及施工阶段不同风攻角下主梁的气动力,并识别相应的三分力系数;基于标准k-ε双方程湍流模型建立三维数值计算模型,识别不同风攻角下三分力系数结果,并将其与风洞试验结果对比;结合2种方法研究雷诺数、桥面附属物和公路及铁路交通状况等因素对主梁气动特性的影响. 结果表明低风攻角下雷诺数对主梁气动特性影响较小,可忽略不计,并提出了高风攻角下识别双层桁架三分力系数最低雷诺数的建议值;桥面附属物对主梁阻力系数影响显著,下层桥面附属物有效降低了主梁升力系数;公路车辆对主梁气动系数影响较小,迎风侧列车对主梁阻力系数、升力系数影响显著,背风侧列车对主梁力矩系数影响显著.


关键词: 三分力系数,  风洞试验,  数值模拟,  双层桁架,  公铁两用斜拉桥 
Fig.1 Direction and coordinate of three-component forces
Fig.2 Cross section of double deck truss girder
Fig.3 Truss section model in wind tunnel
Fig.4 Sketch map of wind tunnel system of BJ-1
Fig.5 Picture of α bracket and force balance
工况 测试内容 测试对象 模型状态描述
1 雷诺数效应 成桥主梁 风攻角为?10°~10°,风速为10 m/s、15 m/s
2 桥面附属物 成桥、施工阶段主梁 主梁节段模型附加栏杆、挡渣墙,风攻角为?10°~10°.
3 交通因素 公路车辆主梁 上层按6线公路布置不同类型车辆,风攻角为±3°、±1°及0°
4 交通因素 铁路车辆主梁 下层四线铁路按轨道I~IV依次布置单列列车,风攻角为±3°、±1°及0°
Tab.1 Cases of wind tunnel test
Fig.6 Size of computational domain and definition of each boundary
Fig.7 Mesh of computational domain
Fig.8 Results comparison of three-component coefficients between wind tunnel test and CFD simulation under different wind speeds
v/(m·s?1) $Re$ ${C_{\rm D}}$ ${C_{\rm L}}$ ${C_{\rm M}}$
10 6.3×104 0.978 0.987 0.993
15 9.5×104 0.985 0.992 0.963
Tab.2 Association coefficient between experiment and CFD simulated results
Fig.9 Comparison of three-component coefficients under different Reynolds numbers
Fig.10 Effect of attachment on three-component coefficients
桥面状态 he/m α=?3° α=0° α=3°
${C_{\rm D}}$ ${C_{\rm L}}$ ${C_{\rm D}}$ ${C_{\rm L}}$ ${C_{\rm D}}$ ${C_{\rm L}}$
无附属 0 0.794 ?0.544 0.729 ?0.183 0.786 0.471
公路栏杆 0.4 0.835 ?0.333 0.779 ?0.028 0.823 0.291
铁路挡渣墙 0.9 0.859 ?0.216 0.808 0.066 0.856 0.373
栏杆+挡渣墙 1.3 0.940 ?0.254 0.836 0.053 0.866 0.379
Tab.3 Effect of attachment on drag and lift coefficients with under wind attack angles of −3°, 0° and 3°
Fig.11 Size of road vehicle model
Fig.12 Size of rail vehicle model
Fig.13 Road and rail vehicle on truss model
Fig.14 Comparison of three-component coefficients under diffenent traffic conditions
[1]   高宗余, 梅新咏, 徐伟, 等 沪通长江大桥总体设计[J]. 桥梁建设, 2015, 45 (6): 1- 6
GAO Zong-yu, MEI Xin-yong, XU Wei, et al Overall design of Hutong Changjiang River Bridge[J]. Bridge Construction, 2015, 45 (6): 1- 6
[2]   高亮, 刘建新, 张丹 桁架桥主梁三分力系数试验[J]. 长安大学学报: 自然科学版, 2012, (1): 52- 56
GAO Liang, LIU Jian-xin, ZHANG Dan Experimental study on three-component force coefficients of truss girder cross-section[J]. Journal of Chang'an University: Natural Science Edition, 2012, (1): 52- 56
doi: 10.3969/j.issn.1671-8879.2012.01.011
[3]   李永乐, 徐昕宇, 郭建明, 等 六线双层铁路钢桁桥车桥系统气动特性风洞试验研究[J]. 工程力学, 2016, (04): 130- 135
LI Yong-le, XU Xin-yu, GUO Jian-ming, et al Wind tunnel tests on aerodynamic characteristics of vehicle-bridge system for six-track double-deck steel-truss railway bridge[J]. Engineering Mechanics, 2016, (04): 130- 135
[4]   王福军. 计算流体力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 1-2.
[5]   项海帆, 葛耀君 现代桥梁抗风理论及其应用[J]. 力学与实践, 2007, 29 (1): 1- 13
XIANG Hai-fan, GE Yao-jun Modern theory for wind resistant bridge and its application[J]. Mechanics in Engineering, 2007, 29 (1): 1- 13
doi: 10.3969/j.issn.1000-0879.2007.01.001
[6]   汪家继, 樊健生, 聂建国, 等 大跨度桥梁箱梁的三分力系数识别研究[J]. 工程力学, 2016, (1): 95- 104
WANG Jia-ji, FAN Jian-sheng, NIE Jian-guo, et al Computational study on static coefficients of box girder section for long-span bridges[J]. Engineering mechanics, 2016, (1): 95- 104
[7]   沈自力 基于CFD的桁架桥气动参数研究[J]. 铁道科学与工程学报, 2015, (8): 852- 858
SHEN Zi-li Research on aerodynamic parameter of truss bridge based on CFD theory[J]. Journal of Railway Science and Engineering, 2015, (8): 852- 858
[8]   李永乐, 安伟胜, 蔡宪棠 倒梯形板桁主梁CFD简化模型及气动特性研究[J]. 工程力学, 2011, 28 (1): 103- 109
LI Yong-le, AN Wei-sheng, CAI Xiantang Simplified CFD modal and aerodynamic characteristics of inverted trape-zoidal plate-truss deck[J]. Engineering Mechanics, 2011, 28 (1): 103- 109
[9]   邹明伟, 郑史雄, 唐煜, 等 倒梯形桁架桥断面气动参数研究[J]. 铁道标准设计, 2018, 62 (3): 53- 57
ZOU Ming-wei, ZHENG Shi-xiong, TANG Yu, et al Study on aerodynamic parameters of inverted trapezoid section of truss bridge[J]. Railway Stand Design, 2018, 62 (3): 53- 57
[10]   中华人民共和国交通部. 公路桥梁抗风设计规范: JTG/T D60-01-2004, [S]. 北京: 人民交通出版社, 2004.
[11]   国家铁路局. 铁路桥涵设计规范: TB 10002-2017 [S]. 北京: 中国铁道出版社, 2017.
[12]   埃米尔·希缪, 罗伯特·H·坎伦. 风对结构的作用: 风工程导论[M]. 上海: 同济大学出版社, 1992: 289.
[13]   李加武, 张宏杰, 韩万水 斜拉桥风致响应的雷诺数效应[J]. 中国公路学报, 2009, (2): 42- 47
LI Jia-wu, ZHANG Hong-jie, HAN Wan-shui Wind-induced response of cable-stayed bridge with consideration of Reynolds number effect[J]. China Journal of Highway and transport, 2009, (2): 42- 47
doi: 10.3321/j.issn:1001-7372.2009.02.008
[14]   JAKOBSEN J B, ANDERSEN T L, MACDONALD J H G, et al Wind-induced response and excitation characteristics of an inclined cable model in the critical Reynolds number range[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 110 (11): 100- 112
[15]   LEE S, KWON S D, YOON J Reynolds number sensitivity to aerodynamic forces of twin box bridge girder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 127 (127): 59- 68
[16]   ZHANG W, CAI C S, PAN F Fatigue reliability assessment for long-span bridges under combined dynamic loads from winds and vehicles[J]. Journal of Bridge Engineering, 2013, 18 (8): 735- 747
doi: 10.1061/(ASCE)BE.1943-5592.0000411
[17]   WANG T, HAN W S, YANG F, et al Wind-vehicle-bridge coupled vibration analysis based on random traffic flow simulation[J]. Journal of Traffic and Transportation Engineering (English Edition), 2014, 1 (4): 293- 308
doi: 10.1016/S2095-7564(15)30274-9
[18]   POSPí?IL S, BULJAC A, KOZMAR H, et al Influence of stationary vehicles on bridge aerodynamic and aeroelastic coefficients[J]. Journal of Bridge Engineering, 2016, 22 (4): 05016012
[19]   WU J, ZHOU Y, CHEN S Wind-induced performance of long-span bridge with modified cross-section profiles by stochastic traffic[J]. Applied Mechanics and Materials, 2012, 41 (3): 464- 476
[20]   HAN Y, HU J, CAI C S, et al Experimental and numerical studies of aerodynamic forces on vehicles and bridges[J]. Wind and Structures an International Journal, 2013, 17 (2): 163- 184
doi: 10.12989/was.2013.17.2.163
[21]   HAN Y, LIU S, HU J X, et al Experimental study on aerodynamic derivatives of a bridge cross-section under different traffic flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 133: 250- 262
doi: 10.1016/j.jweia.2014.08.003
[22]   HAN Y, LIU S, CAI C S, et al The influence of vehicles on the flutter stability of a long-span suspension bridge[J]. Wind and Structures an International Journal, 2015, 20 (2): 275- 292
doi: 10.12989/was.2015.20.2.275
[23]   陈政清. 桥梁风工程[M]. 北京: 人民交通出版社, 2005: 55-56.
[24]   SIMIU E, SCANLAN R H. Wind effects on structures: an introduction to wind engineering [M]. 3rd ed. New York: The Macmillan Company, 1996: 59.
[25]   刘志文, 胡建华, 陈政清, 等 闭口箱形主梁断面三分力系数二维大涡模拟[J]. 公路交通科技, 2011, 28 (11): 61- 66
LIU Zhi-wen, HU Jian-hua, CHEN Zheng-qing, et al 2D large eddy simulation of aerostatic coefficients of a closed-box main girder section[J]. Chinese Journal of Highway and Transportation Research and Development, 2011, 28 (11): 61- 66
doi: 10.3969/j.issn.1002-0268.2011.11.011
[1] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[2] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[3] Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.
[4] Guo-hui SHEN,Yu-nan BAO,Yong GUO,Gang SONG,Yi-wen WANG. Along-line wind loads and distribution patterns of transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1658-1665.
[5] Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.
[6] Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.
[7] Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.
[8] Zhong YUN,Meng WEN,Zi-rong LUO,Long CHEN. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 407-415.
[9] Si-yuan XU,Jun DU,Guang-xi ZHAO,Zheng-ying WEI. Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2224-2232.
[10] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.
[11] Zhong YUN,Meng WEN,Yi JIANG,Long CHEN,Long-fei FENG. Design and hydrodynamic analysis of pectoral fin oscillation propulsion mechanism of bionic manta ray[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 872-879.
[12] Wen-liang QIU,Ha-si HU,Tian TIAN,Zhe ZHANG. Structural parameters affecting seismic behavior of concrete-filled steel tube composite piers[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 889-898.
[13] Yu-qi HUANG,Pan MEI,Xiao-ji CHEN,Chang-shui DENG. Heating strategy for electric vehicular battery pack based on CFD analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 207-213.
[14] Jin XIA,Shi-jie JIN,Xiao-yu HE,Xiao-mei XU,Wei-liang JIN. Effect of electric potential condition on numerical simulation of electrochemical rehabilitation for concrete structures[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2298-2308.
[15] Yu XIANG,Shu-zhe ZHANG,Jun-feng LI,Zheng-ying WEI,Li-xiang YANG,Li-hao JIANG. Numerical simulation and experimental verification for selective laser single track melting forming of Ti6Al4V[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2102-2109.