Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (2): 389-397    DOI: 10.3785/j.issn.1008-973X.2020.02.021
Mechanical and Energy Engineering     
Characteristics of ash deposition growth in mixed atmosphere of NH3 and SO3
Hao ZHOU(),Zi-xian BAI,Zhen-huan CHEN,Jia-kai ZHANG
State Key Laboratory of Clean Energy Utilization Institute, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(2217KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The drop tube furnace system was used to study the characteristics of ash deposition growth under different temperatures of probe surface in the mixed atmosphere of NH3 and SO3. The ash deposition process was recorded by the charge coupled device (CCD) camera, and the temperature inside and outside of the probe was monitored in real time to obtain the change of the thickness of ash deposition and the heat flux on the probe surface. And the ash deposition characteristics were further studied by the X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive spectrometer (EDS). Experimental results demonstrate that the stable thickness of the ash deposition decreases and the relative heat flux on the probe surface increases as the surface temperature of the probe increases. When the probe surface temperature was 200, 230 and 260 °C, the average ash deposition thickness was 2.15, 1.82 and 1.40 mm, respectively, and the relative change in average heat flux was 30.6%, 40.3% and 41.8%, respectively. The ash deposition growth can be divided into three stages, the rapid growth stage, the slow growth stage and the stable stage. The ammonium bisulfate (ABS) was detected by XRD, and the N element was detected by EDS, indicating that the generation of viscous ABS in a mixed atmosphere aggravates fly ash deposition. SEM results show that the ash deposition on the upper part of the probe is mostly agglomerated and the particle size increases, and the lower ash deposition is mostly spherical, similar to the fly ash. In addition, the agglomeration of the upper ash deposition is weakened, and the lower ash deposition becomes smoother and looser as the surface temperature of the probe increases.



Key wordsmixed atmosphere      probe surface temperature      ammonium bisulfate      ash deposition growth      heat flux     
Received: 22 May 2019      Published: 10 March 2020
CLC:  TK 11  
Cite this article:

Hao ZHOU,Zi-xian BAI,Zhen-huan CHEN,Jia-kai ZHANG. Characteristics of ash deposition growth in mixed atmosphere of NH3 and SO3. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 389-397.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.02.021     OR     http://www.zjujournals.com/eng/Y2020/V54/I2/389


NH3和SO3混合气氛下的灰沉积生长特性

通过沉降炉系统研究NH3和SO3混合气氛中不同探针表面温度下的灰沉积生长特性. 利用电荷耦合器件(CCD)相机记录灰沉积生长过程,并实时监测探针内外温度,得到灰沉积物厚度变化及探针表面热流密度变化,通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)和能谱仪(EDS)等进一步研究灰沉积物特性. 研究表明,探针表面温度越高,灰沉积物的稳定厚度越小、探针表面的相对热流密度越大. 当探针表面温度为200、230、260 °C时,平均灰沉积厚度分别为2.15、1.82、1.40 mm,平均热流密度相对变化量分别为30.6%、40.3%、41.8%. 灰沉积生长可以分为快速增加、缓慢增加和稳定阶段. XRD检测出硫酸氢铵(ABS),EDS检测出N元素,说明在混合气氛下生成黏性ABS加剧飞灰沉积. SEM结果表明,探针上部灰沉积物多为团聚状,粒径增大;下部灰沉积物多为圆球状,与原飞灰形貌相似. 随着探针表面温度的升高,上部灰沉积物团聚现象减弱,下部灰沉积物变得更为平滑疏松.


关键词: 混合气氛,  探针表面温度,  硫酸氢铵(ABS),  灰沉积生长,  热流密度 
Fig.1 Schematic diagram of drop tube furnace system
Fig.2 Schematic diagram of probe and CCD camera
Fig.3 Schematic diagram of SO3 formation device
化合物 wB/% 化合物 wB/%
SiO2 52.640 MgO 1.390
Al2O3 25.570 SO3 1.228
CaO 7.330 TiO2 1.070
Fe2O3 6.690 P2O5 0.468
Na2O 1.640 SrO 0.198
K2O 1.610 BaO 0.166
Tab.1 XRF results of original fly ash
θ1/°C θ2/°C qm/
(kg·h?1
v/
(m·s?1
φ(SO3 φ(NH3
200、230、
260
320 ~2.6 ~9.2 ~2 500×
10?6
~100×
10?6
Tab.2 Experiment conditions for ash deposition in drop tube furnace
Fig.4 Schematic diagram of ash deposition thickness calculation
Fig.5 Schematic diagram of thermocouple arrangement of probe
Fig.6 Growth curves of ash deposition under different temperatures of probe surface
Fig.7 Images of ash deposition growth in 200 °C
Fig.8 Curves of internal and external temperature changes of probe
Fig.9 Heat flux curves under different temperatures of probe surface
Fig.10 XRD photos of ash deposition under different temperatures of probe surface
Fig.11 Figure of ash deposition on upper and lower surfaces of probe
Fig.12 SEM photos of ash deposition on upper and lower surfaces of probe
Fig.13 EDS analysis of ash deposition under different temperatures of probe surface
[1)]   MUZIO L, BOGSETH S, HIMES R, et al Ammonium bisulfate formation and reduced load SCR operation[J]. Fuel, 2017, 206: 180- 189
doi: 10.1016/j.fuel.2017.05.081
[2]   ZHOU C Y, ZHANG L N, DENG Y, et al Research progress on ammonium bisulfate formation and control in the process of elective catalytic reduction[J]. Environmental Progress and Sustainable Energy, 2016, 35 (6): 1664- 1672
doi: 10.1002/ep.12409
[3]   蒋海涛, 蔡兴飞, 付玉玲, 等 燃煤电厂SO3形成、危害及控制技术 [J]. 发电设备, 2013, 27 (5): 366- 368
JIANG Hai-tao, CAI Xing-fei, FU Yu-ling, et al Formation, harms and control technology of SO3 from coal fired power plants [J]. Power Equipment, 2013, 27 (5): 366- 368
doi: 10.3969/j.issn.1671-086X.2013.05.018
[4]   LONSDALE C R, STEVENS R G, BROCK C A, et al The effect of coal-fired power plant SO2 and NOx control technologies on aerosol nucleation in the source plumes [J]. Atmospheric Chemistry and Physics, 2012, 12 (23): 11519- 11531
doi: 10.5194/acp-12-11519-2012
[5]   马双忱, 郭蒙, 宋卉卉, 等 选择性催化还原工艺中硫酸氢铵形成机理及影响因素[J]. 热力发电, 2014, 43 (2): 75- 78
MA Shuang-chen, GUO Meng, SONG Hui-hui, et al Formation mechanism and influencing factors of ammonium bisulfate during the selective catalytic reduction process[J]. Thermal Power Generation, 2014, 43 (2): 75- 78
doi: 10.3969/j.issn.1002-3364.2014.02.075
[6]   马双忱, 邓悦, 吴文龙, 等 SCR脱硝过程中硫酸氢铵形成特性实验研究[J]. 动力工程学报, 2016, 36 (2): 143- 150
MA Shuang-chen, DENG Yue, WU Wen-long, et al Experimental research on ABS formation characteristics in SCR denitrification process[J]. Journal of Chinese Society of Power Engineering, 2016, 36 (2): 143- 150
doi: 10.3969/j.issn.1674-7607.2016.02.010
[7]   唐昊, 李慧, 杨江毅, 等 NH3-SCR工艺中硫酸铵盐的生成与分解机理研究进展 [J]. 化工进展, 2018, 37 (3): 822- 831
TANG Hao, LI Hui, YANG Jiang-yi, et al Research progress on the formation and decomposition mechanism of ammonium-sulfate salts in NH3-SCR technology [J]. Chemical Industry and Engineering Progress, 2018, 37 (3): 822- 831
[8]   刘建民, 陈国庆, 黄启龙, 等 燃煤脱硝机组空气预热器蓄热片表面飞灰沉积板结机理研究[J]. 中国电机工程学报, 2016, (Suppl.1): 132- 139
LIU Jian-min, CHEN Guo-qing, HUANG Qi-long, et al Study on mechanism of fly ash deposition and hardening on the air preheater regenerative piece surface of the coal-fired and denitration unit[J]. Proceedings of the CSEE, 2016, (Suppl.1): 132- 139
[9]   马双忱, 邓悦, 吴文龙, 等 SCR脱硝副产物硫酸氢铵与空预器中飞灰反应特性[J]. 环境工程学报, 2016, (11): 6563- 6570
MA Shuang-chen, DENG Yue, WU Wen-long, et al Reaction characteristic of by-product ammonium bisulfate from SCR denitrification and fly ash in air preheater[J]. Chinese Journal of Environmental Engineering, 2016, (11): 6563- 6570
doi: 10.12030/j.cjee.201507027
[10]   杨建国, 杨炜樱, 郑方栋, 等 NH3和SO3对硫酸氢铵和硫酸铵生成的影响 [J]. 燃料化学学报, 2018, 46 (1): 92- 98
YANG Jian-guo, YANG Wei-ying, ZHENG Fang-dong, et al Effect of NH3 and SO3 on the formation of ammonium hydrogen sulfate and ammonium sulfate [J]. Journal of Fuel Chemistry and Technology, 2018, 46 (1): 92- 98
doi: 10.3969/j.issn.0253-2409.2018.01.012
[11]   MENASHA J, DUNN-RANKIN D, MUZIO L, et al Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater[J]. Fuel, 2011, 90 (7): 2445- 2453
doi: 10.1016/j.fuel.2011.03.006
[12]   蔡永铁. CFB富氧燃烧气氛下飞灰的沉积试验及沉积过程模拟[D]. 哈尔滨: 哈尔滨工业大学, 2014.
CAI Yong-tie. Experimental studies and numerical simulations of fly ash deposition in oxy-fuel CFB [D]. Harbin: Harbin Institute of Technology, 2014.
[13]   罗闽, 赵伶玲, 李偲宇 空气预热器硫酸氢铵积灰的数值研究[J]. 动力工程学报, 2016, 36 (11): 883- 888
LUO Min, ZHAO Ling-ling, LI Si-yu Numerical study on ash deposition of ammonium hydrogen sulfate in air preheater[J]. Journal of Chinese Society of Power Engineering, 2016, 36 (11): 883- 888
doi: 10.3969/j.issn.1674-7607.2016.11.005
[14]   ZHENG Z M, WANG H, GUO S, et al Fly ash deposition during oxy-fuel combustion in a bench-scale fluidized-bed combustor[J]. Energy and Fuels, 2013, 27 (8): 4609- 4616
doi: 10.1021/ef400774b
[15]   LIU Z, LI J B, WANG Q H, et al An experimental investigation into mineral transformation, particle agglomeration and ash deposition during combustion of Zhundong lignite in a laboratory-scale circulating fluidized bed[J]. Fuel, 2019, 243: 458- 468
doi: 10.1016/j.fuel.2019.01.134
[16]   LI G D, LI S Q, DONG M, et al Comparison of particulate formation and ash deposition under oxy-fuel and conventional pulverized coal combustions[J]. Fuel, 2013, 106: 544- 551
doi: 10.1016/j.fuel.2012.10.035
[17]   NAMKUNG H, XU L H, LIN K F, et al Relationship between chemical components and coal ash deposition through the DTF experiments using real-time weight measurement system[J]. Fuel Processing Technology, 2017, 158: 206- 217
doi: 10.1016/j.fuproc.2017.01.010
[18]   ZHOU H, ZHANG J K, ZHANG K Investigation of the deposition characteristics of ammonium bisulfate and fly ash blend using an on-line digital image technique: effect of deposition surface temperature[J]. Fuel Processing Technology, 2018, 179: 359- 368
doi: 10.1016/j.fuproc.2018.07.030
[19]   ZHOU H, ZHOU B, LI L T, et al Experimental measurement of the effective thermal conductivity of ash deposit for high sodium coal (Zhun Dong coal) in a 300 kW test furnace[J]. Energy and Fuels, 2013, 27 (11): 7008- 7022
doi: 10.1021/ef4012017
[20]   WANG H F, HARB J N Modeling of ash deposition in large-scale combustion facilities burning pulverized coal[J]. Progress in Energy and Combustion Science, 1997, 23 (3): 267- 282
doi: 10.1016/S0360-1285(97)00010-5
[1] Jia-kai ZHANG,Li NIE,Ke-fa CEN,Xiao JIANG,Hao ZHOU. Experimental study on slagging characteristics during coal and biomass co-combustion with on-line measurement technique[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1955-1963.
[2] MOU Lin-wei, ZHANG Yu-hong, LI Jia-qi, ZHANG Jia-yi, JIANG Ping, FAN Li-wu. Surface wicking effect on boiling heat transfer during quenching[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 960-965.
[3] LI Jia qi, FAN Li wu, YU Zi tao. Boiling heat transfer characteristics during quench cooling on superhydrophilic surface[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1493-1498.
[4] XU Pei-pei, LIU Jian-zhong, LEI Qi, XIANG Yi, ZHOU Jun-hu, CEN Ke-fa.
Experimental research on thermal performance of cavity receiver of solar thermal power tower plant
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 3-.
[5] XU Pei-pei, LIU Jian-zhong, LEI Qi, XIANG Yi, ZHOU Jun-hu, CEN Ke-fa.
Experimental research on thermal performance of cavity receiver of solar thermal power tower plant
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1721-1726.
[6] ZHENG Cheng-Hang, CHENG Le-Ming, LI Chao, JIA Zhong-Yang, NI Meng-Jiang, CEN Ge-Fa. Numerical simulation   of low calorific gas combustion and
heat transfer in porous media
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1567-1572.