Please wait a minute...
J4  2010, Vol. 44 Issue (8): 1567-1572    DOI: 10.3785/j.issn.1008-973X.2010.08.024
    
Numerical simulation   of low calorific gas combustion and
heat transfer in porous media
ZHENG Cheng-hang, CHENG Le-ming, LI Tao, LUO Zhong-yang,
NI Ming-jiang, CEN Ke-fa
State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering,
Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Computational fluid dynamics (CFD) was used to study low calorific gases combustion and heat transfer in a 2D alumina (Al2O3) particle packed bed porous media burner. With considering turbulence and diffusion of gas, convection between gas and solid, radiation and conduction between solid and solid, the distributions of pressure, velocity, temperature of gas and solid, mole fraction of premixed gas in the porous media were simulated. Based on the investigation, the total heat flux and radiation heat flux at different axe location were compared. The simulation results show that the temperature difference between gas and solids in front of combustion fronts is larger than that at back of combustion fronts. Heat transfer is more intense in front of combustion fronts. Solids have higher temperature than gas thus the heat is transferred from solid to gas. Behind the combustion fronts, the heat transfer intensity is relative low and the gas temperature is higher than solids'.



Published: 21 September 2010
CLC:  TK 124  
Cite this article:

ZHENG Cheng-Hang, CHENG Le-Ming, LI Chao, JIA Zhong-Yang, NI Meng-Jiang, CEN Ge-Fa. Numerical simulation   of low calorific gas combustion and
heat transfer in porous media. J4, 2010, 44(8): 1567-1572.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.08.024     OR     http://www.zjujournals.com/eng/Y2010/V44/I8/1567


多孔介质内低热值气体燃烧及传热数值模拟

以一个简化的氧化铝(Al2O3)堆积小球多孔介质燃烧器为模拟对象,使用计算流体力学(CFD)方法对低热值气体燃烧进行模拟研究. 考虑气体的湍流扩散和气固间的对流换热及固体间的辐射和导热换热,通过研究多孔介质内的压力分布、速度分布、温度分布及组分分布,对多孔介质内的总的热流密度及辐射热流密度进行对比分析,揭示燃烧器内不同轴向位置的燃烧及换热规律. 结果表明,低热值气体在氧化铝(Al2O3)堆积小球多孔介质燃烧器内燃烧时火焰面前沿气固温差大于火焰面后气固温差. 火焰面前沿固体温度高于气体温度,热量由固体传向气体,对流换热强度较大;火焰面后沿气体温度高于固体温度,热量由气体传向固体,对流换热强度较小.

[1] 娄马宝. 低热值气体燃料(高炉煤气)的利用[J]. 燃气轮机技术, 2000,13(3): 1618.
LOU Mabao.Utilization of LHV fuel gas\
[J\]. Gas Turbine Technology.2000,13(3):1618.
[2] 赵黛青, 夏亮, 何立波. 低热值燃料稳定燃烧的研究现状与进展[J]. 世界科技研究与发展, 2005, 27(5): 3339.
ZHAO Daiqing, XIA Liang, HE Libo. Research and development of stable combustion using low heat value fuel [J]. World SciTech R and D, 2005, 27(5): 3339.
[3] 王关晴. 往复式热循环多孔介质燃烧系统特性研究与数值模拟[D].杭州: 浙江大学, 2008.
WANG Guanqing. The numerical simulation and characteristics study of reciprocal porous media combustion with heat recirculation[D]. Hangzhou: Zhejiang University, 2008.
[4] BARRA, AMANDA J, JANET L E. Heat recirculation and heat transfer in porous burners [J]. Combustion and Flame, 2004, 137(12): 230241.
[5] FABIANO C, ALEXEI V S. Reciprocal flow filtration combustion with embedded heat numerical study [J]. Heat and Mass Transfer, 2003, 46(6): 949961.
[6] FABIANO C, WILLIAM M B, ALEXEI V S. Energy extraction from a porous media reciprocal flow burners with embedded heated exchangers [J]. Journal of Heat Transfer, 2005, 127(1): 123130.
[7] 李姮,程乐鸣,骆仲泱, 等. 多孔介质预混燃气气固温度分布特性试验研究[J]. 浙江大学学报:工学版, 2007, 41(12): 20692072.
LI Heng, CHENG Leming, LUO Zhongyang, et al. Experimental research on gas/solid temperature distribution in porous media premixed combustion [J]. Journal of Zhejiang University:Engineering Scirnce. 2007, 41(12): 20692072.
[8]EMMANUEL C N, GEORGE A A. Measurements of gasparticle convective heat transfer coefficient in a packed bed for hightemperature energy storage [J]. Experimental Thermal and Fluid Science, 2004, 24(12): 19.
[9] 凌忠钱, 周昊, 李国能, 等. 自由堆积多孔介质内超绝热燃烧的试验研究[J]. 浙江大学学报:工学版,2008, 42(2): 282285.
LING Zhongqian, ZHOU Hao, LI Guoneng, et al. Experimental study of superadiabatic combustion in freedumping porous media [J]. Journal of Zhejiang University:Engineering Scirnce, 2008, 42(2): 282285.
[10] LI G N, ZHOU H, QIAN X P Determination of hydrogen production from rich filtration combustion with detailed kinetics based CFD method [J]. Chinese Journal of Chemical Engineering, 2008. 16(2): 292298.
[11] ZHDANOK S A, KENNEDY L A, KOESTER G, Superadiabatic combustion of methane air mixtures under filtration in a packed bed [J]. Combustion and Flame, 1995100 (1/2): 221231.
[12] 史俊瑞. 多孔介质中预混气体超绝热燃烧机理及其火焰特性的研究[D] . 大连:大连理工大学, 2007: 3335.
SHI Ruijun. Combustion mechanism and flame characteristics of the superadiabatic combustion of premixed gases in porous Media [D]. Dalian: Dalian University of Technology. 2007: 3335.
[13]ERGUN S. Fluid flow through packed columns [J]. Chemical Engineering Progress, 1952, 48(2): 8994.
[14] FELICE R D, GIBILARO L G. Wall effects for the pressure drop fixed beds [J]. Chemical Engineering Science, 2004, 59(14): 30373040.
[15] KUWAHARA F, YAMANE T, NAKAYAMA A.Large eddy simulation of turbulent flow in porous media [J]. International Communications in Heat and Mass Heat Transfer, 2006, 33(26): 411418.

[1] WANG Chao, DONG Fei-ying, FAN Li-wu, YU Zi-tao, HU Ya-cai. Experimental study of heat and mass transfer of saltwater cooling tower[J]. J4, 2014, 48(4): 666-670.
[2] XIAO Yu-qi,FAN Li-wu,HONG Rong-hua,XU Xu,YU Zi-tao,HU Ya-cai. Numerical investigation of influence of  nanofillers on performance of energy storage-based heat sink[J]. J4, 2013, 47(9): 1644-1649.
[3] ZENG Yi, HONG Rong-hua, FAN Li-wu, XU Xu,YU Zi-tao, HU Ya-cai. Natural convection of a heat-generating fluid around a horizontal porous percolating circular cylinder[J]. J4, 2013, 47(8): 1463-1469.
[4] WANG Zhi-ke, SUN Xian-dong, GUO Si-pu, LI Hong-xia, LI Wei, ZHU Hua. Experimental Result of condensation in micro-fin tubes of
different geometries
[J]. J4, 2013, 47(2): 293-299.
[5] HUANG Chen,CHENG Le-ming,ZHOU Xing-long,WU Chao-gang,ZHOU Qi, FANG Meng-xiang,. Suspended surface heat transfer in a large circulating
fluidized bed boiler furnace
[J]. J4, 2012, 46(11): 2128-2132.
[6] LI Hong-xia, LI Guan-qiu, LI Wei. Analysis of in tubes particulate fouling characteristic[J]. J4, 2012, 46(9): 1671-1677.
[7] CHEN Wei, QU Li-juan, WANG Chao, YU Zi-tao, WANG Jing-hua. An experimental investigation of the performance of an air-source heat
pump hot-water system based on saltwater energy towers
[J]. J4, 2012, 46(8): 1485-1489.