Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (4): 732-742    DOI: 10.3785/j.issn.1008-973X.2019.04.014
    
Experimental research on seismic behavior of thin cold-formed steel wall–floor connections
Yun-peng CHU1,2(),Xiu-li WANG1,Yong YAO2
1. College of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2. College of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China
Download: HTML     PDF(1683KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A total of 7 samples were designed to examine the effects of different tectonic modes, axial compression ratio, cross section of the frame column and stressed-skin effect on the seismic performance. Results showed as follows. 1) The joint’s failure after skinned is caused by the failure of the self-tapping screws at the wall-floor joint, so preventing the failure of self-tapping screws in the connection is key to success. 2) The bearing capacity and energy dissipation capacity of the recommended joints after covering plate are obviously improved. But the bearing capacity and the energy dissipation capacity are greatly influenced by the height of the section and the ratio of axial pressure. 3) The bearing capacity and energy dissipation capacity of the strengthened joint of angle steel are reduced after skinned, and are greatly effected by the height of cross section. The angle of 2 mm thick specimen is enlarged and reduced in the initial loading. Until all screws are removed from the wall frame and connection completely loses its bearing capacity. Premature failure of self-tapping screws between floor beam and 4 mm thick angle steel specimen causes the bearing capacity to decrease when the thickness increases. 4) The joint’s skeleton curve model is obtained, and the basic data is provided for the structural calculation based on simplified mechanical model seismic performance.



Key wordsconnection of cold-formed steel combined floor      seismic behavior      comparative analysis      failure mode     
Received: 06 March 2018      Published: 28 March 2019
CLC:  TU 318  
Cite this article:

Yun-peng CHU,Xiu-li WANG,Yong YAO. Experimental research on seismic behavior of thin cold-formed steel wall–floor connections. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 732-742.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.04.014     OR     http://www.zjujournals.com/eng/Y2019/V53/I4/732


冷弯薄壁型钢墙体-楼板节点抗震性能试验研究

开展考虑不同构造、轴压比、墙架柱截面类型及覆板蒙皮作用的7个试件的抗震试验,可得如下结论. 1)覆板后节点破坏由墙-楼板连接处的自攻螺钉失效导致,防止该区域的自攻螺钉失效是连接成败的关键. 2)覆板后规程推荐节点承载力、耗能能力明显提高,但受截面高度、轴压比的影响均较大. 3)覆板后角钢加强型节点承载力及耗能能力均降低,且受截面高度的影响大;2 mm 厚角钢试件在加载初期发生两肢间夹角的拉大与减小,破坏时螺钉全部从墙架柱拉脱;4 mm 厚角钢试件楼层梁与角钢间的自攻螺钉过早发生失效,造成角钢厚度增加,承载力降低. 4)获得节点的恢复力骨架曲线特征值,为结构基于简化力学模型抗震计算提供基础数据.


关键词: 冷弯型钢薄壁组合墙体-楼板连接节点,  抗震性能,  对比分析,  破坏模式 
序号 组别 试件编号 连接方式 墙架柱截面 竖向力/kN 轴压比 附注
1 CS-89-0.2-B 规程推荐 C89×44.5×12×1 32.7 0.2 面板采用水平拼缝,且拼接处尽可能远离楼层连接处;墙架柱楼层梁板件厚度为1 mm;墙面OSB板厚度为9 mm;楼面OSB板厚度为15 mm
3 CS-160-0.2-B 规程推荐 C160×40×10×1 17.8 0.2
5 CS-160-0.4-B 规程推荐 C160×40×10×1 35.6 0.4
7 CS-89-0.4-B 规程推荐 C89×44.5×12×1 32.7 0.2
9 NCS-160-0.2-B 角钢加强型 C160×40×10×1 17.8 0.2 角钢厚度为2 mm
11 NCS-89-0.4-B 角钢加强型 C89×44.5×12×1 65.4 0.4 角钢厚度为2 mm
13 NCS-80-0.4-BG 角钢加强型 □80×40×1 91.6 0.4 角钢厚度为4 mm
Tab.1 Number and composition of specimen
Fig.1 Structure of keel and sheathing
荷载级别 位移幅值/mm 循环次数 荷载级别 位移幅值/mm 循环次数
1 ±4.5 3 2 ±9 3
3 ±18 3 4 ±27 2
5 ±36 2 6 ±45 2
7 ±54 2 8 ±63 2
9 ±72 2 10 ±81 2
11 ±90 2 12 ±108 2
13 ±126 2 14 ±144 2
15 ±162 2 16 ±180 2
17 ±207 2 17 ±216 2
Tab.2 Loading history of wall-floor
Fig.2 Sketch of wall-floor and site layout of test equipment
Fig.4 Layout of strain gauge
Fig.3 Layout of displacement meter
Fig.5 Failure phenomena of CS series
Fig.6 Failure phenomena of NCS series
Fig.7 Load-displacement curve for end of beam
Fig.8 Skeleton curve of connections
序号 试件编号 Py/kN Δy/mm Pmax/kN Δmax/mm Pu/kN Δu/mm μ E
1 CS-89-0.2-B 3.19 121 3.44(21.1%) 206 3.44 206 1.70 4 113
2 CS-89-0.2 2.52 63 2.84 108 2.42 181 2.87 3 575
3 CS-160-0.2-B 5.33 113 5.77(31.7%) 169 5.42 201 1.79 6 517
4 CS-160-0.2 3.58 44 4.38 85.5 3.73 148 3.32 3 899
5 CS-160-0.4-B 4.18 61 4.73(54.1%) 85 3.82 105 1.71 3 928
6 CS-160-0.4 2.60 108 2.58 135 2.61 178 3.32 3 899
7 CS-89-0.4-B 3.16 58 3.37(30.6%) 90 3.27 90 1.55 4 017
8 CS-89-0.4 2.69 83 3.24 117 2.76 150 1.81 4 071
9 NCS-160-0.2-B 2.50 108 2.95(?5.5%) 67 2.50 80 1.36 4 070
10 NCS-160-0.2-1 2.61 74 3.12 101 2.65 192 2.59 4 297
11 NCS-89-0.4-B 1.95 60 2.01(?26.9%) 63 1.71 101 1.68 3 250
12 NCS-89-0.4-2 2.24 121 2.75 207 2.75 207 1.21 3 773
13 NCS-80-0.4-BG 1.85 78 2.04(?57.4%) 71 1.73 110 1.41 2 128
14 NCS-80-0.4-2 4.25 70 4.79 135 4.07 202 2.89 5 852
Tab.3 Eigenvalues of load and displacement
Fig.9 Stiffness degenerated curve
Fig.10 Curve of bearing capacity degenerate
[1]   JGJ227-2011, 低层冷弯薄壁型钢房屋建筑技术规程[S]. 北京: 中国建筑工业出版社, 2011.
[2]   YOUNG B, CHEN J Design of cold-formed steel built-up closed sections with intermediate stiffeners[J]. Journal of Structures Engineering, 2008, 134 (5): 727- 737
doi: 10.1061/(ASCE)0733-9445(2008)134:5(727)
[3]   史艳莉, 王文达, 靳垚 考虑墙体作用的低层冷弯薄壁型钢轻型房屋住宅体系弹塑性动力分析[J]. 工程力学, 2012, 29 (12): 186- 195
SHI Yan-li, WANG Wen-da, JIN Yao Elastic-plastic dynamic analysis of cold-formed thin-walled steel framing system of low-rice residential buildings with composite wall[J]. Engineering Mechanics, 2012, 29 (12): 186- 195
doi: 10.6052/j.issn.1000-4750.2011.05.0261
[4]   王秀丽, 褚云朋, 姚勇, 等 超薄壁冷弯型钢C型墙架柱-楼层梁连接抗震性能试验研究[J]. 土木工程学报, 2015, 48 (7): 51- 59
WANG Xiu-li, CHU Yun-peng, YAO Yong, et al Experimental research on seismic behavior of cold-formed C section wall frame-floor beam[J]. China Civil Engineering Journal, 2015, 48 (7): 51- 59
[5]   褚云朋, 姚勇 超薄壁冷弯型钢矩形截面墙架柱-楼层梁连接抗震性能试验研究[J]. 建筑结构学报, 2016, 37 (7): 46- 53
CHU Yun-peng, YAO Yong Experimental study on seismic performance of rectangular wall stud ultra cold-formed steel stud wall-floor joist connection[J]. Journal of Building Structures, 2016, 37 (7): 46- 53
[6]   沈祖炎, 刘飞, 李元齐 高强超薄壁冷弯型钢低层住宅抗震设计方法[J]. 建筑结构学报, 2013, 34 (1): 44- 51
SHEN Zu-yan, LIU Fei, LI Yuan-qi Seismic design method of low-rise high-strength cold-formed thin-walled steel framing buildings[J]. Journal of Building Structures, 2013, 34 (1): 44- 51
[7]   褚云朋, 姚勇, 罗能, 等. 多层房屋冷弯薄壁型钢梁柱结构体系, ZL201210564012.8 [P]. 2015-01-07.
CHU Yun-peng, YAO Yong, LUO Neng, et al. Thin walled steel structure beam column system of multi buildings, ZL201210564012.8 [P]. 2015-01-07.
[8]   GB/T 228.1-2010, 金属材料拉伸试验[S]. 北京: 中国标准出版社, 2010.
[9]   石宇, 周绪红, 苑小丽, 等 冷弯薄壁卷边槽钢轴心受压构件承载力计算的折减强度法[J]. 建筑结构学报, 2010, 31 (9): 78- 86
SHI Yu, ZHOU Xu-hong, YUAN Xiao-li, et al Strength-reduction method for load-carrying capacity of cold-formed lipped channel columns under axial compression[J]. Journal of Building Structures, 2010, 31 (9): 78- 86
[1] Wen-liang QIU,Ha-si HU,Tian TIAN,Zhe ZHANG. Structural parameters affecting seismic behavior of concrete-filled steel tube composite piers[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 889-898.
[2] WANG Rui, LI Yan-lai, ZHU Jiang-hong, YANG Yi. Improved FMEA method for risk evaluation considering expert consensus[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1058-1067.
[3] XU Qiang, ZHENG Shan-suo, LI Xiao-sheng. Experimental study on seismic behavior of steel frame joints considering degradation of offshore environment[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2314-2321.
[4] KONG Ling-gang, YAO Hong-bo, ZHAN Ling-tong, CHEN Yun-min. Effect of water content on failure modes of evapotranspiration landfill cover[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 847-855.
[5] DU Yang, MA Li, ZHENG Jin-yang, ZHANG Fan, ZHANG An-da. Consequences prediction and analysis of pipe explosion considering fluid-structure interaction[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 429-435.
[6] LI Ying-min, YANG Long, LIU Shuo-yu, LUO Wen-wen. Method of failure mode evaluation of structure based on seismic resilience index[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2197-2206.
[7] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 782-789.
[8] OUYANG Wen-xin, WANG Qing-yuan, SHI Xiao-shuang, TAN Lian-fei, PENG Ze-wei. Fatigue test and analysis of PBL shear connectors[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 1090-1096.
[9] WANG Xiao-tun,XIONG Wei. Risk evaluation method in FMEA based on dependent linguistic
ordered weighted geometric operator
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(1): 182-188.
[10] ZHANG Cheng, WU Hui, GAO Bo-qing, WANG Yi-jun. Pattern recognition of dynamic failure mode of grid structure using
fuzzy clustering
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1276-1280.