Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (10): 1954-1963    DOI: 10.3785/j.issn.1008-973X.2018.10.015
Civil Engineering     
Static test and finite element simulation analysis of transverse bending of steel-ultra-high performance concrete composite slabs
LIAO Zi-nan1,2, SHAO Xu-dong1, QIAO Qiu-heng1, CAO Jun-hui1, LIU Xiang-ning1
1. School of Civil Engineering, Hunan University, Changsha 410082, China;
2. Changsha Planning and Design Institute Limited Company, Changsha 410007, China
Download:   PDF(1716KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A series of static load tests were performed on eight steel-ultra-high performance concrete (UHPC) composite slab specimens in order to analyze the flexural properties of steel-UHPC composite slabs under both positive and negative bending moments. The whole damage processes of the specimens were recorded and analyzed. In the case of positive bending moment loading, the specimens experienced three distinct stages, i.e., the linear elastic stage, the crack-developing stage, and the yield stage. The two turning points on the load-deflection curves represent the onset of interfacial slipping and the yielding of the steel plate, respectively. When the specimens approached failure, the UHPC was locally crushed near the loading point and the steel-UHPC interface was separated at both the shear-bending zone and the specimen end. In the case of negative bending moment loading, a first decrease of the stiffness of the specimens was related to the initiation of transversal cracks in the UHPC layer. The internal forces redistributed in the specimens with the cracks developing, leading the tensile stress in the steel bars to continuously increase until yielding. Then the crack width excessively developed and the stiffness of the specimens severely decreased. The specimens finally failed because of the fracture of the UHPC layer. The load tests were simulated using a comprehensive nonlinear finite element (FE) analysis through the software Abaqus. The FE models considered both the contact nonlinearity and material nonlinearity. The concrete damaged plasticity was considered for the UHPC to simulate its deterioration process. The analysis results were compared to the test results. The factors that influence the flexural performance of the steel-UHPC composite slabs (e.g., the ultimate capacity, the flexural stiffness, and the deflection) were analyzed, including the interfacial adhesion mode, the longitudinal reinforcement ratio, and the number and arrangement of studs.



Received: 25 May 2017      Published: 11 October 2018
CLC:  U443  
Cite this article:

LIAO Zi-nan, SHAO Xu-dong, QIAO Qiu-heng, CAO Jun-hui, LIU Xiang-ning. Static test and finite element simulation analysis of transverse bending of steel-ultra-high performance concrete composite slabs. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1954-1963.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.10.015     OR     http://www.zjujournals.com/eng/Y2018/V52/I10/1954


钢-超高性能混凝土组合板横向受弯静力试验及有限元模拟

为了研究钢-超高性能混凝土(UHPC)组合板的受弯性能,开展8块该类组合板的受弯试验,分析正、负弯矩作用下的受弯破坏开展全过程.在正弯矩作用下,组合板受弯破坏经历了线弹性阶段、裂缝开展阶段和屈服阶段,结构刚度两次衰减的拐点分别是界面滑移与钢板屈服,结构破坏时加载点附近UHPC局部压碎且剪弯段及端部界面出现脱空现象;在负弯矩作用下,UHPC层出现横向裂缝导致结构刚度第一次下降,随着裂缝的发展,截面内力重分布使得钢筋应力持续增大直至屈服,最终主裂缝宽度过大导致结构刚度严重衰减,组合板因UHPC层受拉断裂而破坏.采用有限元软件ABAQUS,建立非线性有限元模型.模型中考虑界面接触、材料非线性、混凝土损伤塑性模型等,模拟试验全过程.在与试验结果进行对比分析的基础上,分析影响钢-UHPC组合板抗弯性能的主要因素,包括界面黏结方式、纵筋配筋率、栓钉数及布置,研究这些因素对组合板抗弯极限承载力、结构刚度、跨中挠度等力学性能的影响.

[1] 崔冰, 吴冲, 丁文俊, 等. 车辆轮迹线位置对钢桥面板疲劳应力幅的影响[J]. 建筑科学与工程学报, 2010, 27(3):19-23 CUI Bing, WU Chong, DING Wen-jun, et al. Influence of acting position of vehicle wheels on fatigue stress range of steel deck[J]. Journal of Architecture and Civil Engineering, 2010, 27(3):19-23
[2] 王春生, 成锋. 钢桥腹板间隙面外变形疲劳应力分析[J]. 建筑科学与工程学报, 2010, 27(1):65-72 WANG Chun-sheng, CHENG Feng. Out-of-plane distortional fatigue stress analysis at web gaps of steel bridges[J]. Journal of Architecture and Civil Engineering, 2010, 27(1):65-72
[3] 李辉. 钢-混凝土组合梁斜拉桥病害及其影响分析[D]. 哈尔滨:哈尔滨工业大学, 2008:25-29. LI Hui. The analysis of disease and its effect on cable stayed bridge with composite girder[D]. Harbin:Harbin Institute of Technology, 2008:25-29.
[4] 项海帆. 世界大桥的未来趋势-2011年伦敦国际桥协会议的启示[C]//第二十届全国桥梁学术会议论文集(上册). 武汉:人民交通出版社, 2012:10-17. XIANG Hai-fan. Future trends of the world bridge:implications of the 2011 London Inter-national Bridge conference[C]//Academic Conference Papers of the 20th National Conference on Bridge (The First Volume). Wuhan:China Communications Press, 2012:10-17.
[5] LARRARD D F, SEDRAN T. Optimization of ultra-high-performance concretes[J]. Cement and Concrete Research, 1995, 25(7):1501-1511.
[6] AFGC-SETRA. Ultra high performance fiber reinforced concretes[S]. Pairs:AFGC&SETRA Working Group, 2013.
[7] 邵旭东, 曹君辉, 易笃韬, 等. 正交异性钢板-薄层RPC组合桥面基本性能研究[J]. 中国公路学报, 2012, 25(2):40-45 SHAO Xu-dong, CAO Jun-hui, YI Du-tao, et al. Research on basic performance of composite bridge deck system with orthotropic steel deck and thin RPC layer[J]. China Journal of Highway and Transport, 2012, 25(2):40-45
[8] 刘梦麟, 邵旭东, 张哲, 等. 正交异性钢板-超薄RPC组合桥面板结构抗弯疲劳性能试验研究[J]. 公路交通科技, 2012, 29(10):46-53 LIU Meng-lin, SHAO Xu-dong, ZHANG Zhe, et al. Experiment on flexural fatigue performance of composite deck system composed of orthotropic steel deck and ultra-thin RPC layer[J]. Journal of Highway and Transportation Research and Development, 2012, 29(10):46-53
[9] 邵旭东, 张哲, 刘梦麟, 等. 正交异性钢-RPC组合桥面板弯拉强度的实验研究[J]. 湖南大学学报:自然科学版, 2012(10):7-13 SHAO Xu-dong, ZHANG Zhe, LIU Meng-lin, et al. Research on bending tensile strength for composite bridge deck system composed of orthotropic steel deck and thin RPC topping[J]. Journal of Hunan University:Natural Sciences, 2012(10):7-13
[10] 邵旭东, 郑晗, 黄细军, 等. 钢-UHPC轻型组合桥面板横向受力性能[J]. 中国公路学报, 2017, 30(9):1 SHAO Xu-dong, ZHENG Han, HUANG Xi-jun, et al. Transversal mechanical behavior of steel-UHPC light-weighted composite bridge deck system[J]. China Journal of Highway and Transport, 2017, 30(9):1
[11] YUGUANG Y, WALRAVEN J, UIJL J D. Study on bending behavior of an UHPC overlay on a steel orthotropic deck[C]//2nd International Symposium on Ultra High Performance Concrete. Kassel:Kassel University Press, 2008.
[12] 李文光, 邵旭东, 方恒, 等. 钢-UHPC组合板受弯性能的试验研究[J]. 土木工程学报, 2015, 48(11):93-102 LI Wen-guang, SHAO Xu-dong, FANG Heng, et al. Experimental study on flexural behavior of steel-UHPC composite slabs[J]. China Civil Engineering Journal, 2015, 48(11):93-102
[13] SHAO X D, YI D T, HUANG Z Y, et al. Basic performance of the composite deck system composed of orthotropic steel deck and ultra thin RPC layer[J]. Journal of Bridge Engineering, 2013, 18(5):417-428.
[14] HUU T N, SEUNG E K. Finite element modeling of push-out tests for large stud shear connectors[J]. Journal of Constructional Steel Research, 2009(65):1909-1920.
[15] 张劲, 王庆扬, 胡守营. ABAQUS混凝土损伤塑性模型参数验证[J]. 建筑结构, 2008, 38(8):127-130 ZHANG Jin, WANG Qing-yang, HU Shou-ying, et al. Parameters verification of concrete damaged plastic model of ABAQUS[J]. Building Structure, 2008, 38(8):127-130
[16] KMIECIK P, KAMISKI M. Modeling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration[J]. Archives of Civil and Mechanical Engineering, 2011, 11(3):623-635.
[17] 张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8):50-58 ZHANG Zhe, SHAO Xu-dong, LI Wen-guang, et al. Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport, 2015, 28(8):50-58
[18] 杨剑, 方志. 超高性能混凝土单轴受压应力-应变关系研究[J]. 混凝土, 2008(7):11-15 YANG Jian, FANG Zhi. Research on stress-strain relation of ultra high performance concrete[J]. Concrete, 2008(7):11-15
[19] GRAYBEAL B A. Characterization of the behavior of ultra-high performance concrete[D]. Maryland:University of Maryland College Park, 2005:36-64.
[20] 国家质量监督检验检疫总局. GB/T 10433-2002, 电弧螺柱焊用圆柱头焊钉[S]. 北京:中国标准出版社, 2002:1-5. State Administration of Quality Supervision, Inspection and Quarantine. GB/T 10433-2002, Cylindrical head welding nails for arc stud welding[S]. Beijing:China Standard Press, 2002:1-5.
[21] 丁发兴, 倪鸣, 龚永智, 等. 栓钉剪力连接件滑移性能试验研究及受剪承载力计算[J]. 建筑结构学报, 2014, 35(9):98-106 DING Fa-xing, NI Ming, GONG Yong-zhi, et al. Experimental study on slip behavior and calculation of shear bearing capacity for shear stud connectors[J]. Journal of Building Structures, 2014, 35(9):98-106
[22] 曹君辉. 钢-薄层超高性能混凝土轻型组合桥面结构基本性能研究[D]. 长沙:湖南大学, 2016:47-48. CAO Jun-hui. Research on basic performance of steel-thin UHPC lightweight composite deck[D]. Changsha:Hunan University, 2016:47-48.
[23] LUO Y, HOKI K, HAYASHI K, et al. Behavior and strength of headed stud-SFRCC shear connection, Ⅱ:Strength evaluation[J]. Journal of Structural Engineering, 2015, 142(2):1.
[24] 樊健生, 聂建国. 负弯矩作用下考虑滑移效应的组合梁承载力分析[J]. 工程力学, 2005, 22(3):177-182 FAN Jian-sheng, NIE Jian-guo. Effects of slips on load-carrying capacity of composite beams under negative bending[J]. Engineering Mechanics, 2005, 22(3):177-182
[25] 苗林, 陈德伟. 考虑层间滑移效应的组合梁解析计算[J]. 同济大学学报:自然科学版, 2011, 39(8):1113-1119 MIAO Lin, CHEN De-wei. Closed-form solution of composite beam considering interfacial slip effects[J]. Journal of Tongji University:Natural Science, 2011, 39(8):1113-1119

[1] KUAI Yan-rong, QI Mei-lan, LI Jin-zhao. Analysis of wave forces on bridge substructure in near-shore[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2356-2364.
[2] LEI Yan-yun, XIE Xu. Improved method of Giuffre-Menegotto-Pinto hysteretic constitutive model[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1926-1934.
[3] REN Song, OUYANG Xun, WU Jian-xun, CHEN Fan, WANG Liang, CHEN Jie. Elastic-swelling analytical model of anhydrite rock considering time-dependent effect[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 896-905.
[4] ZHANG Xue-hui, CHEN Ji-xiang, BAI Yun, CHEN Ang, HUANG De-zhong. Ground surface deformation induced by quasi-rectangle EPB shield tunneling[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 317-324.
[5] GUO Kang-shi, ZHUANG Yan-feng, DUAN Wei. Experimental study on micro-mechanism of electro-osmosis using montmorillonite[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(12): 2373-2382.
[6] KE Han, DONG Ding, CHEN Yun-min, GUO Cheng, FENG Shi-jin. Nonlinear elastic model for municipal solid waste considering dilatancy effect[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2158-2164.
[7] ZOU Wei-lie, HE Yang, ZHANG Feng-De, WANG Dong-xing, WANG Shuai, WANG Yuan-ming. Experimental study on unsaturated permeability characteristics of solidified sediment stabilized with cement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2182-2188.
[8] WAN Chen-guang, SHEN Ai-qin, GUO Yin-chuan. Shear behavior of leveling layer and asphalt pavement of bridge deck pavement[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(7): 1355-1360.